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SUMMARY

In this paper, the solutions of the major bit-loading problems that are found in the literature, are unified into
simple equations (models). These equations give an insight of the affection of the channel over a
multicarrier system. Moreover, the models allow the transition from the solution of one loading problem to
the solution of the others. The models are dependent on the modulation type that is used. We examine the
quadrature amplitude modulation (QAM) modulated orthogonal frequency division multiplexing (OFDM),
and the phase shift keying (PSK)-modulated OFDM systems. For each modulation type, the continuous
throughput model is extracted. The continuous throughput model refers to a system that its subcarriers can
be loaded with non-integer number of bits. The non-integer bit distribution can then be rounded to integers,
using a rounding method. The models except from the calculation of the optimised quantities (total data
rate, total power and symbol error rate) without the need of running a loading algorithm to its extent,
provide a means to manipulate a whole multicarrier system in a way similar to single-carrier system.
Copyright # 2007 John Wiley & Sons, Ltd.

1. INTRODUCTION

The wireless spectrum is a limited resource. As modern

wireless communications need to occupy more and more

spectrum, spectrally efficient modulation is imperative.

A widespread solution is orthogonal frequency division

multiplexing (OFDM). An OFDM system consists of a

set of parallel subcarriers, which are mutually orthogonal.

It has been proved that significant performance improve-

ment can be achieved, if the number of bits that each sub-

carrier is loaded with and the transmission power is

adapted, according to the subchannel to noise ratios

(STNR’s) [1, 2]. Of course, this means that the transmitter

is aware of the instantaneous channel gains and noise char-

acteristics of all of the subcarriers. This demands feedback

from the receiver. Moreover, the receiver should be aware

of the different modulation modes per subcarrier, in order

to demodulate the information correctly.

The parameters to be considered for a multicarrier

loaded system are the total data rate RT, the total transmis-

sion power PT per OFDM symbol and the overall probabil-

ity of symbol error Perr. These parameters are named

global parameters [3]. One global parameter is being opti-

mised (either maximised or minimised), whereas the other

two impose the constraints of the problem. The algorithms

proposed in the literature so far aim to maximise the total

data rate, minimise the error rate or the total transmission

power. According to the special application where the

adaptive OFDM is used, several other constraints are

added. For instance, non-integer bit distributions are
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practically unacceptable [4]. This is due to the fact that

quadrature amplitude modulation (QAM) or phase shift

keying (PSK) leads to integer bit assignment per symbol.

Moreover, legislation imposes bounds to the maximum

transmission power Pmax at certain frequencies. The max-

imum acceptable power leads to restrictions to the maxi-

mum bit load per subcarrier [5]. This is also a constraint

to the optimisation problem.

There are several algorithms in the literature. Basically,

two main categories of those algorithms exist. The first

category includes algorithms that solve the optimisation

problems analytically [4, 6, 7], relaxing the constraint

for integer bit distributions. The resulting system is named

continuous throughput because the analytical equations for

the bit distributions lead to non-integers. Then using a

rounding method [6, 8], they convert the non-integer bit

distribution to integer. The other category includes algo-

rithms that assign integer number of bits to the subcarriers

[9–12], based on the greedy approach.

Piazzo in Reference [3] has proved that a system, which

is optimised with respect to one of the global parameters,

is also optimum with respect to the other two (equivalent

solutions). Those solutions belong to a set that is named

globally optimal set. The analysis is focused mainly in

the continuous throughput system. In this case, Piazzo

claims a theorem that unifies the solutions of the optimisa-

tion problems. The practical outcome of the theorem is the

existence of ‘operators’ that allow transferring from one

optimised system to the other. Since all optimisation pro-

blems do not have the same complexity, solving the sim-

plest of the three problems is equivalent to solving any of

the other two.

In this paper, we move a step further, proving that the

solutions are not just equivalent but they are identical. This

formalisation is going to be used to extract a unified model

that describes any bit-loaded multicarrier system. This

unified model is the ‘operator’ that Piazzo claims in

Reference [3] and allows transferring from the solution

of one optimisation problem to the other. Of course, the

operator depends on the modulation type.

However, before reaching the unified models, the sys-

tem model is introduced in detail in Section 2. In Section 3,

the optimisation problems are formed and the equiva-

lence of the different problems is explained. In Sections 4

and 5, the bit and power distributions for QAM- and

PSK-modulated OFDM systems are extracted for each

optimisation problem. The additional feature is that it is

proved that the solutions of the optimisation problems

are identical. Then, running simulations on a common

channel, it is verified experimentally that the three optimi-

sation problems lead to identical non-integer bit distribu-

tions. Those simulations confirm practically what we

expected from the preceding theoretic analysis and enforce

the argument about the unified solution. Exploiting the

analytical results for QAM and PSK multicarrier systems,

we construct the unified models that describe the overall

system performance and implicate the global parameters

of the systems on simple equations. These equations,

solved for one of the three global parameters, can give

the needed optimised quantity as a function of the other

two, without the need of running the loading algorithms

to its extend. Moreover, the equations provide a deep

insight of the channel’s influence on the system and, in

fact, summarise it.

The unified models (‘operators’) for the examined mod-

ulation types are valid for continuous throughput systems.

In many papers, the final integer bit distribution is obtained

rounding the real number bit distribution. Applying a roun-

ding algorithm, like the one proposed in Reference [8],

the error rate performance of the integer throughput sys-

tems is obtained by simulations. Then, on the same graphs,

the actual and the modelled symbol error rate curves are

plotted. For both QAM–OFDM and PSK–OFDM systems,

the continuous throughput models are rather close to the

actual system performance.

2. SYSTEM MODEL

Assume that an OFDM system consists of N parallel

subcarriers. Each subcarrier is modulated to transmit Ri

bits (i is the subcarrier index) and suffers by fading that

is different from subchannel to subchannely. Let us use

the notation HiðfiÞ to express the subchannel’s amplitude

and phase influence on the ith subcarrier. The symbol

Pi denotes the power transmission per subcarrier. So,

the received signal has power per subcarrier given by

Equation (1)

Er;i ¼ Pi HiðfiÞj j2 ð1Þ

We consider that every subcarrier is affected by additive

white Gaussian noise of zero mean and variance ni. For

unit transmission power, the subchannel to noise ratio is

given by Equation (2).

yHere, the word subchannel is not used alternatively for the word subcar-
rier, although in some papers, the two words are used mutually. The term
subchannel, refers to the part of the physical channel dedicated to the spe-
cific subcarrier of the multicarrier system.
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This parameter is going to be used often in the remain-

der of the paper as it summarises the channel gain and the

noise effect per subchannel. The described subchannel

model is shown in Figure 1.

gi ¼
HiðfiÞj j2

ni
ð2Þ

The subchannel to noise ratios are independent from

each other as the channel’s coherence bandwidth is

assumed to be smaller than the subcarrier spacing. More-

over, perfect channel estimation is assumed and channel

variations are slow and followed accurately by the channel

equaliser.

The notation Perror;i is used for the symbol error rate

(SER) at the ith subcarrier. We should evoke that on a sub-

carrier basis, the transmission power Pi, the bits per sym-

bol Ri, the symbol error rate Perror;i and the subchannel to

noise ratio gi are connected through a function, either

strictly describing or approximating the relationship

between them. This equation depends on the modulation

type that is used and in most cases, it entails the well-

known Q(x) function which is a strictly decreasing function.

Let Perror;i ¼ f ðRi;SNRiÞ be that function. Using

Equations (1) and (2), the signal to noise ratio per subcar-

rier at the receiver is SNRi ¼ giPi and the error rate func-

tion can be turned into Perror;i ¼ f ðRi;Pi; giÞ (for simplicity

reasons, f ðRi;Pi; giÞ will be written as fiðRi;PiÞ where the

index i in the function fi encloses the channel to noise ratio

gi that differs from subchannel to subchannel).

When QAM or PSK is used, the function fi is continuous

and strictly monotonous. Obviously, when Ri ¼ 0, then,

Pi ¼ 0 which means that no power is transmitted from a

subcarrier that is not loaded with bits.

The optimum system, concerning the error rate,

demands the Perror;i to be equal among the different subcar-

riers. Otherwise, the highest error rate among the subcar-

riers would dominate Reference [6]. In most of the papers

existing in the literature, equal SER among the subcarriers

is demanded [5, 6, 10, 13, 14].

Therefore, the global parameters, that is the total data

rate per OFDM symbol, the total transmitting power and

the symbol error rate, are calculated, based on the subcar-

rier parameters using the following equations respectively:

RT ¼
XN
i¼1

Ri ð3Þ

PT ¼
XN
i¼1

Pi ð4Þ

Perr ¼ Perror;i; 8i 2 ½1;N� ð5Þ

3. OPTIMISATION PROBLEMS

The objective target is to optimise one of the global para-

meters, given the other two. Thus, three optimisation pro-

blems are formulated. The data rate maximisation problem

for given total power budget P
ð1Þ
T and symbol error rate

P
ð1Þ
err , the power minimisation problem for fixed data rate

R
ð2Þ
T and symbol error rate P

ð2Þ
err , and the error minimisation

problem for constraint total power budget P
ð3Þ
T and total bit

rate R
ð3Þ
T

z. Before solving the optimisation problems, there

are some notions from the set theory that should be

claimed. Let us consider the set S of all possible adaptive

OFDM systems for a given channel and modulation type.

A system is rate optimum if there is no other system,

operating at the same global transmission power and the

same SER, achieving higher global data rate. The data rate

optimum systems form the set �R � S.

A system is power optimum if there is no other system,

operating at the same global data rate and the same SER,

requiring lower global transmission power. The power

optimum systems form the set �P � S.

Finally, a system is error rate optimum if there is no

other system, operating at the same global transmission

power and the same total data rate, achieving lower error

rate. The error rate optimum systems form the set �� � S.

The intersection of the three defined sets gives the set

�g of the so-called globally optimum systems �g ¼
�R \ �P \ ��, that is systems optimum simultaneously

with respect to all three global parameters. In Reference

[3] the following theorem is proved:

Figure 1. Subchannel model.

zThe indexes (1), (2), (3) are used to distinguish the global parameters
among the optimisation problems. For the rest of the paper, (1), (2), (3)
are used for the data rate, power and SER optimisation problems, respec-
tively.
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Theorem 1: Given a continuous throughput OFDM system

the following results: �g � �R � �P � ��.

This theorem asserts that in the case of continuous

throughput OFDM systems, an optimum system with

respect to one of the global parameters is optimal with

respect to the other two. For details about the preceding

analysis and for the proof of the theorem, the reader can

refer to Reference [3]. We repeat here the main points of

this analysis for quick reference. The above theorem

claims that the adaptive OFDM systems that are solutions

of the three different optimisation problems are equivalent.

For example solving the data rate problem for a specific

channel and modulation type, it results in the bit distribu-

tion named B ¼ fRð1Þ
1 ;R

ð1Þ
2 ; . . . ;R

ð1Þ
N g having global para-

meters P
ð1Þ
T , P

ð1Þ
err , R

ð1Þ
T . Solving the power minimisation

problem results in the bit distribution C ¼ fRð2Þ
1 ;R

ð2Þ
2 ;

. . . ;R
ð2Þ
N g having global parameters, according to Theorem

1, P
ð2Þ
T ¼ P

ð1Þ
T , P

ð2Þ
err ¼ P

ð1Þ
err , R

ð2Þ
T ¼ R

ð1Þ
T . This is what

equivalence of the solutions of the optimisation problems

means. Nevertheless, in this paper, we move a step

further proving for QAM and PSK adaptive OFDM sys-

tems that the solutions are not equivalent but identical, that

is B � C.

4. QAM APPLICATION

In this section, we work on a system based on QAM. The

optimisation problems are solved and the bit and power

distributions are extracted. Finally, the unified bit-loading

model for a QAM multicarrier system is formed. In a

QAM system, the variables Pi, Ri and Perror;i cannot be

implicated in one equation. When Ri is an even number

there is an analytic equation but when it is odd there is

not. On the other hand, it has been proved [2, 15]

that the symbol error probability for QAM is bounded by

Equation (6).

Perror;i44Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Pigi

2Ri � 1

r !
; Ri51 ð6Þ

In our analysis (as in other papers too), the equality of

the previous bound is used, expecting the theoretic opti-

mum solution to be pessimistic, compared to the perfor-

mance of a real adaptive multicarrier system. In order to

manipulate Equation (6) easier, its argument that impli-

cates the symbol error rate, the transmission power and

the bits per subcarrier is isolated into Equation (7).

A ¼ 3Pigi

2Ri � 1
ð7Þ

We demand the symbol error rate per subcarrier to be

constant Perror;i ¼ Perr and thus, A ¼ ½Q�1ðPerr=4Þ�2 is con-

stant too.

Solving Equation (7) for Ri, the rate-power function for

QAM is obtained in Equation (8)

Ri ¼ log2 1 þ 3Pigi

A

� �
ð8Þ

Equation (8) is strictly increasing and thus it is inverti-

ble. The inverse function is

Pi ¼
2Ri � 1

3gi
A ð9Þ

4.1. Problem 1: Maximising data rate

Let us consider a system that has to maximise the total data

rate, under the constraints that the total transmission power

should not surpass a power budget and the SER is less than

a fixed error rate. Since the target is to maximise the data

rate, it would be necessary to exploit all the available

power. Simultaneously, the error rate should be equal to

the maximum tolerable. Thus, the constraints are not

inequalities. The problem is formulated as follows:

XN
i¼1

Ri ! max ð10Þ

XN
i¼1

Pi ¼ P
ð1Þ
T ð11Þ

Að1Þ ¼ 3Pigi

2Ri � 1
ð12Þ

The problem is solved using the well-known Lagrange

method. Formulating the objective function �1

�1 ¼
XN
i¼1

Ri þ l1

XN
i¼1

Pi ð13Þ

and imposing its derivative towards Pi to be equal to zero,

we get Equation (14). From Equations (14) and (8), its

equivalent Equation (15) is obtained.

@Ri

@Pi

¼ �l1 ð14Þ

1

ln 2 � Að1Þ

3gi
þ Pi

� � ¼ �l1 ð15Þ
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Solving Equation (15) for Pi, the optimum power distri-

bution for the ith subcarrier is

Pi ¼
1

ln 2 � ð�l1Þ
� Að1Þ

3gi
ð16Þ

Using the properties of the Leibnitz notation, Equation

(14) results in

@Pi

@Ri

¼ � 1

l1

ð17Þ

Substituting Equation (9) into Equation (17) and solving

for Ri, the bit distribution of the system that optimises the

total data rate is

Ri ¼ log2 � 3gi

Að1Þ ln 2 � l1

� �
ð18Þ

Using Equation (16) and the power constraint (11), the

Lagrange multiplier is calculated at Equation (19). Then

substituting l1 in Equations (16) and (18), the general

solution for the first optimisation problem is extracted.

�l1 ¼ N

ln 2 � P
ð1Þ
T þ Að1Þ

3

PN
i¼1

1
gi

� � ð19Þ

Obviously, the power and bit distributions will be func-

tions of the known quantities P
ð1Þ
T and Að1Þ.

Pi ¼
P
ð1Þ
T

N
þ Að1Þ

3N

XN
l¼1

1

gl
� 1

gi

� �
; Pi > 0 ð20Þ

Ri ¼ log2

3P
ð1Þ
T gi

Að1ÞN
þ 1

N

XN
l¼1

gi

gl

 !
; Ri > 0 ð21Þ

Finally, from Equations (21) and (10), the total optimum

data rate is

R
ð1Þ
T ¼ log2

3P
ð1Þ
T

Að1ÞN
þ 1

N

XN
l¼1

1

gl

 !N

�
YN
i¼1

gi

( )
ð22Þ

4.2. Problem 2: Minimising the total transmitting power

Let us consider a system that has to minimise the total

transmitting power, under the constraints that its total data

rate should not be less than a target data rate and the sym-

bol error rate is less than a fixed error rate. Since the target

is to minimise the total transmitting power, it would be

necessary to reduce the data rate as much as the constraint

permits. Simultaneously, the error rate should be equal to

the maximum tolerable. The problem is formulated as fol-

lows:

XN
i¼1

Pi ! min ð23Þ

XN
i¼1

Ri ¼ R
ð2Þ
T ð24Þ

Að2Þ ¼ 3Pigi

2Ri � 1
ð25Þ

The notations R
ð2Þ
T and Að2Þ correspond to the total data

rate and the fixed SER, respectively, for the second optimi-

sation problem. First of all, the objective function �2 is

formulated

�2 ¼
XN
i¼1

Pi þ l2

XN
i¼1

Ri ð26Þ

Imposing its derivative towards Pi to be equal to zero we

get Equation (27). From Equations (27) and (8), its equiva-

lent Equation (28) is obtained

@Ri

@Pi

¼ � 1

l2

ð27Þ

1

ln 2 � Að2Þ

3gi
þ Pi

� � ¼ � 1

l2

ð28Þ

Solving Equation (28) for Pi, the power distribution is

Pi ¼
1

ln 2 � � 1
l2

� �� Að2Þ

3gi
ð29Þ

From Equation (27) and the properties of the Leibnitz

notation, we have

@Pi

@Ri

¼ �l2 ð30Þ

Substituting Equation (9) into Equation (30) and solving

for Ri, the bit distribution of the system that optimises the

total transmission power is

Ri ¼ log2 � 3gil2

Að2Þ ln 2

� �
ð31Þ

The Lagrange constant is calculated, substituting

Equation (31) into the data rate constraint and solving

the resulting equation for l2
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�l2 ¼ 2R
ð2Þ
T
=NAð2Þ ln 2

3
QN
l¼1

gl

� �1=N
ð32Þ

Substituting l2 into Equations (29) and (31), the

power and bit distributions are attained as functions of

R
ð2Þ
T and Að2Þ.

Ri ¼ log2 gi
2R

ð2Þ
T
=N

QN
l¼1

gl

� �1=N

0
BBB@

1
CCCA; Ri > 0 ð33Þ

Pi ¼
Að2Þ

3
� 2R

ð2Þ
T
=N

QN
l¼1

gl

� �1=N
� Að2Þ

3gi
ð34Þ

Finally, the optimal total power is from Equations (23)

and (34)

PT ¼ Að2Þ � N
3

� 2R
ð2Þ
T
=N

QN
l¼1

gl

� �1=N
� Að2Þ

3

XN
i¼1

1

gi
ð35Þ

4.3. Equivalence of the solutions of the two problems

From Equations (14) and (27), it can be seen that both pro-

blems could have the same power distribution as solution

if

l2 ¼ 1

l1

ð36Þ

In fact, this is true, if the outcome (i.e. optimised quan-

tity) of any of the two problems examined so far is

imposed as constraint to the other. For instance, the opti-

mum (minimised) overall transmission power of the sec-

ond optimisation problem is imposed to be the

predetermined power budget of the data rate optimisation

problem. Assume that both problems have the same SER

that is Að1Þ ¼ Að2Þ ¼ A. Therefore, we have

P
ð1Þ
T ¼ P

ð2Þ
T ð37Þ

From Equations (16) and (29), we have:

X
i

1

ln 2ð�l1Þ

� �
�
X
i

A

3gi
¼
X
i

1

ln 2ð�1=l2Þ

� �
�
X
i

A

3gi

N

ln 2 � ð�l1Þ
¼ N

ln 2 � ð�1=l2Þ

and, finally, l2 ¼ 1=l1 which is the sufficient condition

that the two examined so far optimisation problems lead

to the same power distribution. Imposing the same SER

in both problems and beginning from the optimum (max-

imised) overall data rate of the first optimisation problem,

using Equation (18), and the rate constraint of the second

optimisation problem, using Equation (31) we have

R
ð1Þ
T ¼ R

ð2Þ
T ð38Þ

X
i

log2 � 3gi

Að1Þ ln 2 � l1

� �
¼
X
i

log2 � 3gil2

Að2Þ ln 2

� �

log2

Y
i

� 3gi

Að1Þ ln 2 � l1

� �
¼ log2

Y
i

� 3gil2

Að2Þ ln 2

� �

� 3

Að1Þ ln 2 � l1

� � Y
i

gi

 !1=N

¼ � 3 � l2

Að2Þ ln 2

� � Y
i

gi

 !1=N

and finally again l2 ¼ 1=l1. That means that the two pro-

blems lead to the same bit and power distribution, when

the output of one of the problems is imposed as input to

the other, on condition that the SER is the same in both

problems.

4.4. Problem 3: Minimising the overall symbol error rate

Suppose that a system should transmit at least R
ð3Þ
T bits per

OFDM symbol, whereas the transmitting power should not

be more than P
ð3Þ
T . The aim is to achieve the lowest possi-

ble symbol error rate. In order to minimise the error rate,

the system should be forced to work to its limits. That is,

transmit as less data bits as possible using as much power

as possible. Thus, the problem is formulated as follows.

Perror;i ¼ fiðRi;PiÞ ! min ð39Þ

XN
i¼1

Ri ¼ R
ð3Þ
T ð40Þ

XN
i¼1

Pi ¼ P
ð3Þ
T ð41Þ

Using the Lagrange method once more, function � is

formed
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� ¼ fiðRi;PiÞ þ l3

XN
i¼1

Ri þ l4

XN
i¼1

Pi ð42Þ

The optimised system can be found solving the system

of Equations (40), (41) and (43):

~r� ¼ 0 ð43Þ

From Equations (43) and (42), we get the set of equations

@fiðRi;PiÞ
@Ri

þ l3 ¼ 0

@fiðRi;PiÞ
@Pi

þ l4 ¼ 0

ð44Þ

Imposing that Perror;i ¼ Perr (i.e. constant for all subcar-

riers) practically means that the solution of the problem lays

on the curve, defined by the surface fiðRi;PiÞ 8Ri > 0,

Pi > 0 and the plane fiðRi;PiÞ ¼ Perr (see Figure 2). Thus,

any trivial variation of the data rate @Ri or the power @Pi per

subcarrier, do not result in any variation of the error rate @fi.
Therefore, the partial derivatives are equal to zero

@fiðRi;PiÞ
@Ri

¼ 0

@fiðRi;PiÞ
@Pi

¼ 0

ð45Þ

and, consequently, the Lagrange constants are equal to

zero too.

l3 ¼ 0

l4 ¼ 0

�
ð46Þ

Hence, the solution of the third problem is given by all

sets (Ri;Pi) that satisfy the data rate constraint (40) and the

power constraint (41). If the data rate constraint R
ð3Þ
T is

equal to the optimum data rate R
ð1Þ
T of the first problem

and the power constraint P
ð3Þ
T is equal to the respective

power constraint of the first problem P
ð1Þ
T , then the bit

and power distributions of the first problem satisfy the con-

straints of the third optimisation problem and thus, those

distributions are also solutions of the third problem as

well. Simultaneously, if the optimum total transmission

power P
ð2Þ
T of the second optimisation problem is equal

to P
ð3Þ
T and the data rate constraint R

ð3Þ
T is equal to the res-

pective data rate constraint R
ð2Þ
T of the second problem,

then the solution of problem 2 is also solution of the error

optimisation problem. The optimised (minimum) error

rate P
ð3Þ
err is the error rate imposed as constraint into the rate

or power optimisation problems (P
ð1Þ
err , P

ð2Þ
err , respectively).

Therefore, we have shown that the pairs (20, 21) and

(33, 34) are also solutions of the SER minimisation pro-

blem. The optimum SER is comprised into either Að1Þ or

Að2Þ. However, the error rate is the unknown and should

be expressed as a function of the known P
ð3Þ
T and R

ð3Þ
T .

Taking Equation (34) as solution and imposing that

P
ð2Þ
T ¼ P

ð3Þ
T , R

ð2Þ
T ¼ R

ð3Þ
T and Að2Þ ¼ Að3Þ, we have

P
ð3Þ
T ¼

XN
l¼1

Að3Þ � 2R
ð3Þ
T
=N

3
QN
l¼1

gl

� �1=N
� Að3Þ

3gl

0
BBB@

1
CCCA ð47Þ

Solving for Að3Þ, the optimised quantity is obtained as a

function of P
ð3Þ
T and R

ð3Þ
T .

Substituting Equation (48) into Equations (33) and (34),

the bit and power distribution is extracted for known total

power budget and target data rate.

Að3Þ ¼
3
P
ð3Þ
T

N
�
QN
l¼1

gl

� �1
N

2
R
ð3Þ
T
N �

QN
l¼1

gl

� �1=N

� 1
N

PN
i¼1

1
gi

ð48Þ

Ri ¼ log2 gi
2R

ð3Þ
T
=N

QN
l¼1

gl

� �1=N

0
BBB@

1
CCCA; Ri > 0 ð49Þ

Figure 2. Schematic representation of the solution of the opti-
mum symbol error rate system, imposing fiðRi;PiÞ to be constant
for all the subcarriers.
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Pi ¼
2

R
ð3Þ
T
N

QN
l¼1

gl

� �1
N

� 1

gi

0
BBBB@

1
CCCCA

P
ð3Þ
T

N

QN
l¼1

gl

� �1
N

2R
ð3Þ
T
=N �

QN
l¼1

gl

� �1
N

1
N

PN
i¼1

1
gi

ð50Þ

4.5. Remarks

At this point, we should summarise the results of the ana-

lysis so far. First of all, the rate-power function is depen-

dent on the modulation type. Second, the rate-power

function should have some certain properties. It should

be one-to-one, in order to be inverted and express the

power as function of the data rate. This is the case for

QAM because Equation (8) is strictly increasing. The

rate-power function must also be differentiable. This is

also valid for Equation (8). Moreover, Equation (14) can

be turned into Equation (17) if the partial derivative of

the rate-power function towards Pi is not zero for any

Pi5 0. This is also valid in QAM as the left hand side

of Equation (15) is not zero for any Pi5 0. Finally, if

the outcome of one of the three problems is imposed as

input to the other, then the optimum bit and power distri-

bution is the same.

4.6. Unified model for continuous throughput
multicarrier QAM system

It is very easy to verify experimentally, the validity of our

analysis and the fact that all problems lead to the same bit

distribution. For this purpose, a frequency-selective chan-

nel is needed. The channel that was used as communica-

tions medium was a power line channel. In References

[16] and [17], extensive measurements were performed

over power lines. Two indicative transfer functions of

power line channels are shown in Figure 3.

Extensive noise measurements also took place. The

noise samples were stored in archives and used to calculate

their variances ni. Finally, we assumed that AWGN affects

the parallel subcarriers§ having zero mean and standard

deviations
ffiffiffiffi
ni

p
. The experimental data Hi(fi) of channel 2

of Figure 3 and the noise variances ni were used to calcu-

late gi using Equation (2). The tolerable error rate was

fixed to 10�4 and the power budget was fixed to 130 mW

per OFDM symbol. The OFDM symbol consists of 512

subcarriers. Iteratively, the subchannels that resulted in

negative or zero bits per subcarrier, according to Equation

(21) were excluded. The remainder of them was used to

distribute bits. The non-integer bit distribution is shown

in Figure 4.

The total data rate of this simulation R
ð1Þ
T ¼ 500 bits per

OFDM symbol was used as input into Equation (33) for the

same channel 2. The resulted bit distribution is shown in

Figure 5. It is identical to the bit distribution of Figure 4.

Hence, theoretically and experimentally (using simula-

tions) it is evident that both Equations (21) and (33) lead to

the same non-integer bit distribution. If we equalise the

§Adequate noise model for a power line channel has not been constructed
yet. So, for simplicity reasons and without losing generality, AWGN is
assumed to affect every subcarrier.

Figure 3. Typical power line transfer functions measured in the
laboratory in the frequency range 500 KHz–30 MHz.

Figure 4. Non-integer bit distribution of an optimum data rate
QAM–OFDM system.
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right hand side of both of them, a useful model that

describes the overall OFDM system is attained. The con-

stant SER of all the subcarriers is a function of the total

data rate and the total transmitting power. Equation (51)

provides the continuous throughput QAM–OFDM model.

Perr ¼ 4Q
ffiffiffi
A

p� �
; where A ¼ 3PavGMgi

2Rav � GMgiMIgi
ð51Þ

GMgi is the geometric mean of the subchannel to noise

ratios gi, MIgi is the mean value of the inverse subchannel

to noise ratios g�1
i and Pav and Rav are the average power

and bit rate that is transmitted per subcarrier, of the N sub-

carriers that remained turned on.

Obviously, the A parameter of Equation (51) is the same

with Equation (48), which gives the solution of the third

optimisation problem. Thus, Equation (51) unifies the

solutions of all problems into one simple equation. If the

subchannels that are turned on are determined, then chan-

nel’s statistics such as the geometric mean of the subchan-

nel to noise ratios, and the mean value of the inverse of the

subchannel to noise ratios are enough to allow evaluating

the system’s performance.

4.7. Comments on the continuous throughput
QAM–OFDM model

Some important comments on the continuous throughput

QAM–OFDM model are:

(1) Equation (51) seems to be analogous to Equation (7)

for single-carrier QAM.

(2) Equation (51) describes the performance of the N par-

allel QAM subcarriers loaded, using either Equations

(21) or (33) and the global parameters. The whole fre-

quency bandwidth is manipulated using some statisti-

cal characteristics of it, like the geometric mean of the

subchannel to noise ratios gi and the mean value of the

noise to subchannel ratios 1=gi. These statistics, in

fact, summarise the influence of the frequency band

over the multicarrier system.

(3) Equation (51) is expected to be rather pessimistic,

compared to the performance of a real QAM–OFDM

loaded system, due to the fact that the corresponding

for one subcarrier model (7) is an upper bound for the

error rate.

The graphical representation of Equation (51) for data

rates fluctuating from 1000 up to 3000 bits per OFDM

symbol and power budget 1 mW is shown in Figure 6.

The transmission medium was channel 2 of Figure 3.

4.8. Unified model versus integer throughput
multicarrier QAM system

The real bit distribution is practically unacceptable. It has

to be rounded to integers. The model that describes the

resulted integer throughput system is of greater importance

as it has practical applicability. Except of the category of

the algorithms that lead to integer bit distributions (like the

algorithms proposed in References [9, 10]), all the other

Figure 5. Non-integer bit distribution of an optimum power
QAM–OFDM system.

Figure 6. Optimum symbol error rate of an adaptive QAM–
OFDM system, using simulations and the continuous throughput
model.
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algorithms [4, 6, 7, 13] approach the final integer bit dis-

tribution, rounding a non-integer bit distribution. In Figure 6,

we present the results of the simulated QAM–OFDM sys-

tem that minimises the error rate, using Equations (49) and

(50) for several data rates and constant power budget equal

to PT ¼ 1 mW.

The channel that is used is channel 2 of Figure 3. The

non-integer bit distribution was rounded using the round-

ing procedure proposed in Reference [8]. For every simu-

lation run, the symbol error rate was counted. As expected,

Equation (51) provides an upper bound of the performance

of the actual system, by virtue for most data loads. More-

over, the simulated system is diverted from the optimum

solution as the rounding procedure distracts it from optim-

ality. However, the difference between the simulation

curve (integer throughput system) and the modelled curve

(51) is not important for most of the data loads. Figure 6

shows that the continuous throughput model tracks the real

system closely.

5. PSK APPLICATION

In this part of the paper, the same methodology is used to

solve again the optimisation problems and prove that all of

them, under certain pre-requirements, lead to the same bit

distributions. The function that implicates bit rate, power

and symbol error rate per subcarrier [2] is

Perror;i ¼ 2Q sin
p

2Ri

� � ffiffiffiffiffiffiffiffiffiffiffi
2Pigi

p� �
ð52Þ

For simplicity reasons and in order to transform

Equation (52) into a more convenient form, the sinus func-

tion is substituted by its argument.

Perror;i ¼ 2Q
p

2Ri

ffiffiffiffiffiffiffiffiffiffiffi
2Pigi

p� �
ð53Þ

It is well known that sinx � x when x � 1. In PSK, this

is the case for Ri52. Indeed, Figure 7 plots the approxima-

tion error ð p
2Ri

� sin p
2Ri
Þ=sin p

2Ri
expressed in dB for

Ri 2 ½1; . . . ; 6�. For Ri52, the approximation error is less

than �10 dB, whereas for Ri ¼ 1 the error is �2:4 dB.

Because of the fact that p=2Ri > sinðp=2RiÞ for Ri50,

Equation (53) leads to a system with optimistic perfor-

mance. The theoretical results, that is SER, are expected

to be better compared to the actual system performance.

In order to manipulate Equation (53) easier, its argu-

ment that implicates the SER, the transmission power

and the number of bits per subcarrier is isolated into

Equation (54).

A ¼ p
2Ri

ffiffiffiffiffiffiffiffiffiffiffi
2Pigi

p
ð54Þ

The system that is examined has equal SER among its

subcarriers Perror;i ¼ Perr and thus A ¼ Q�1ðPerr=2Þ.
Equation (54), solved for Ri, gives the rate-power func-

tion for PSK modulation

Ri ¼ log2

p
A

ffiffiffiffiffiffiffiffiffiffiffi
2Pigi

p� �
ð55Þ

Equation (55) is strictly increasing and thus, it is inver-

tible. The inverse function is

Pi ¼
A2

p2

22Ri

2gi
ð56Þ

Equations (55) and (56) are differentiable once. Differ-

entiating them once, Equations (57) and (58) are obtained,

respectively

@Ri

@Pi

¼ 1

2 ln 2 � Pi

ð57Þ

@Pi

@Ri

¼ A2

p2gi
22Ri ln 2 ð58Þ

5.1. PSK maximising rate

The optimisation problem is the same as Section 4.1

states. We follow the same methodology using the

Figure 7. The approximation error in dB, introduced by substi-
tuting the sinus function with its argument, versus the number of
bits.
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objective function �1. Substituting Equation (57) into

(14), we get

�l1 ¼ 1

2 ln 2 � Pi

ð59Þ

The Lagrange multiplier is calculated solving Equation

(59) for Pi and using it in the power constraint (11)

�l1 ¼ N

2 ln 2 � Pð1Þ
T

ð60Þ

The power distribution is obtained from Equations (60)

and (59)

Pi ¼
P
ð1Þ
T

N
ð61Þ

Finally, using Equations (61) and (55), the bit distribu-

tion is

Ri ¼ log2

p
Að1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
P
ð1Þ
T

N
gi

s0
@

1
A; Ri > 0 ð62Þ

5.2. PSK minimising power

The optimisation problem is the same as Section 4.2 states.

We follow the same methodology using the objective func-

tion �2. Substituting Equation (58) into Equation (30), we

obtain Equation (63)

�l2 ¼ ðAð2ÞÞ2

p2gi
22Ri ln 2 ð63Þ

The Lagrange multiplier l2 is calculated solving

Equation (63) for Ri and using it in the rate constraint (24).

Afterward, the bit distribution is acquired using

Equations (63) and (64)

�l2 ¼ 22R
ð2Þ
T
=NðAð2ÞÞ2

ln 2

p2
QN
l¼1

gl

� �1=N
ð64Þ

Ri ¼
1

2
log2 gi

2
2R

ð2Þ
T
N

QN
l¼1

gl

� �1=N

0
BBB@

1
CCCA; Ri > 0 ð65Þ

Finally, according to Equation (56), using Equation

(65), the power distribution is obtained

Pi ¼
ðAð2ÞÞ2

p2

22R
ð2Þ
T
=N

2
QN
l¼1

gl

� �1=N
ð66Þ

Note that from Equation (66), we have a constant power

distribution to the subcarriers of a PSK adaptive OFDM

system, just like Equation (61) shows. Thus, for common

SER Að1Þ ¼ Að2Þ ¼ A, if the optimised quantity of the

power minimisation problem is imposed to the rate maxi-

misation problem, we have:

P
ð1Þ
T ¼ P

ð2Þ
T

P
ð1Þ
T ¼ N � A2

p2

22R
ð2Þ
T
=N

2
QN
l¼1

gl

� �1=N
ð67Þ

and substituting it in Equation (62), we have for the bit dis-

tribution of the rate optimisation problem

Ri ¼
1

2
log2 gi

2
2R

ð2Þ
T
N

QN
l¼1

gl

� �1=N

0
BBB@

1
CCCA ð68Þ

which means that the bit distributions of the two problems

are identical.

5.3. PSK minimising symbol error rate

According to the analysis in Section 4.4, either Equations

(61, 62) or Equations (65, 66) can be used as solutions of

the third optimisation problem. The optimum error rate is

entailed into either Að1Þ or Að2Þ. Nevertheless, the error rate

is the unknown and should be expressed as a function of

the known P
ð3Þ
T and R

ð3Þ
T . From Equations (65) and (61),

the bit and power distribution is

Ri ¼
1

2
log2 gi

22R
ð3Þ
T
=N

QN
l¼1

gl

� �1=N

0
BBB@

1
CCCA; Ri > 0 ð69Þ

Pi ¼
P
ð3Þ
T

N
ð70Þ

The unknown Að3Þ is given as function of P
ð3Þ
T and R

ð3Þ
T

by Equation (71). The latter equation originates from
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Equation (66), summing both sides over all N subcarriers

and replacing Að2Þ ¼ Að3Þ and R
ð2Þ
T ¼ R

ð3Þ
T .

Að3Þ ¼ p

2R
ð3Þ
T
=N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
P
ð3Þ
T

N

YN
l¼1

gl

 !1=N
vuut ð71Þ

5.4. Unified model for continuous throughput
multicarrier PSK system

The validity of the prior theoretic analysis is tested experi-

mentally. The channel that was used was again channel 2

of Figure 3. The tolerable symbol error rate was fixed to

10�4 and the power budget was fixed to 117 mW per

OFDM symbol. Iteratively, the subchannels that resulted

in negative or zero bits per subcarrier, according to

Equation (62) were closed. The remained turned on were

loaded with bits. The R
ð1Þ
T output of this system, equal to

500 bits, is used as input in Equation (65) and after closing

the ‘bad’ subcarriers, we distribute bits over the rest of them.

Figures 8 and 9 present the continuous bit distributions

resulted from Equations (62) and (65). They are identical.

Therefore, the theoretic analysis has been verified via

simulations. Equalising the right hand side of both

Equations (62) and (65), a useful model that describes the

overall PSK–OFDM system is obtained. Equation (72) is

the continuous throughput PSK–OFDM model. The con-

stant error rate of all subcarriers is a function of the total

data rate and the total transmitting power.

A ¼ p
2Rav

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2PavGMgi

p
! Perr ¼ 2QðAÞ ð72Þ

Pav and Rav are the average power and bit rate that are dis-

tributed over the N remained turned on subcarriers. GMgi

is the geometric mean of the subcarrier to noise ratios gi of

those ‘good’ subcarriers. Please notice that the general

model (72) is completely analogous to Equation (54), used

for one subcarrier modulated with PSK. However, as men-

tioned earlier, the theoretical model that Equation (72)

introduces is rather optimistic describing the system’s

performance. Moreover, Equation (72) is the same as

Equation (71), which gives the solution of the third optimi-

sation problem. Thus, Equation (72) unifies the solutions

of all problems into one simple equation. Its graphical

representation for several data rates, fluctuating between

1000 and 3000 bits per OFDM symbol and constant power

budget fixed at PT ¼ 1 mW is shown in Figure 10. The

channel that is used is channel 2 of Figure 3.

5.5. Unified model versus integer throughput
multicarrier PSK system

In this subsection, a PSK system loaded using Equations

(69) and (70) is simulated. The channel that is used is again

channel 2. The continuous bit distribution is rounded using

the procedure described in Reference [8]. Then, for every

simulation run, the actual symbol error rate is counted for

several data rates fluctuating between 1000 and 3000 bits

per OFDM symbol and constant power budget equal to PT ¼
1 mW. The simulation results are plotted in Figure 10.

Figure 8. Non-integer bit distribution of an optimum data rate
PSK–OFDM system.

Figure 9. Non-integer bit distribution of an optimum power
PSK–OFDM system.
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Please notice that the theoretic continuous throughput

model, that is Equation (72) tracks the simulated system

closely. Second, the model is optimistic compared to the

actual system as expected. It is diverted in the lower part

of the plot where few data bits are loaded. This is attributed

to the fact that the approximation error in Equation (53) is

important for Ri < 2. For instance, 1000 bits per OFDM

symbol when 512 subcarriers are used means that

Rav < 2 and the approximation error, according to Figure

7, is great. This error diverts the theoretical model from the

actual system. Moreover, it is expected that the integer-

rounding procedure also diverts slightly the system from

the optimum continuous solution.

6. CONCLUSIONS

In this paper, the performance of the optimum adaptive

OFDM systems are unified into simple models. Those

models are dependent on the modulation type that is used.

We have examined the QAM and the PSK cases, as they

are of major practical interest. The unified models that

were constructed for every modulation type are the so-

called continuous throughput models because the subcar-

riers are allowed to be loaded with non-integer number

of bits. The continuous throughput models are very useful

because of their simplicity. They can be used to handle a

multicarrier system, in a way similar to single-carrier sys-

tems. Whole frequency bands are characterised by average

statistics like the geometric mean of the subchannel to

noise ratios and the mean value of the noise to subchannel

ratios. Moreover, the integer throughput multicarrier sys-

tems are found to be rather close to the continuous

throughput systems. This is very important because the

continuous throughput system, although unacceptable in

most applications, it can be used to predict the perfor-

mance of an integer throughput system.

The difference between the models and the actual sys-

tems becomes trivial with the data load increase. That

means that when the system is pushed to work to its limits

(severe circumstances), the models offer a good approxi-

mation tool, in order to design a multicarrier system with-

out needing to run the bit-loading algorithms to their

extend. The quantification of the difference of the perfor-

mance of the continuous throughput and the integer

throughput system is an issue for further work.
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