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Abstract: Analytical expressions concerning the capacity and bit error rate (BER) of
multiple-input multiple-output systems with space-time block coding (STBC) are derived. Two
fading environments are examined, log-normal and Rician channels. A tight closed-form upper
bound is presented for the BER of systems operating in log-normal fading environments in addition
to an upper bound for the capacity of this type of systems. The latter bound applies to systems that
operate under Rician fading as well. The analytical results were validated against ample numerical
simulations for three STBC schemes and three phase-shift-keying modulations. The proposed
bounds proved to be a tractable way to evaluate the system performance when no closed-form
expression for the probability density function or the moment generating function is known.
1 Introduction

The ever-increasing need for low-cost broadband communi-
cations has become the driving force behind the extensive
research in the field of wireless communications. Wireless
local area networks (WLANs) used for wideband trans-
mission have attracted the interest of the scientific commu-
nity with the bulk of studies focusing on the investigation
of coding as well as modulation techniques. The need to
examine the channel capacity and the bit error rate (BER)
with mathematical analysis can become burdensome
depending on the environment that is investigated. In this
paper, two channel models are taken into account; the
Rician and the log-normal channel models. Experimental
results at several frequencies support the fact that the
Rician model describes indoor (see Babich and Lombardi
[1] and references therein) as well as outdoor environments,
whereas, the log-normal distribution family is particularly
true for indoor radio propagation environments, where
terminals with low mobility have to rely on macroscopic
diversity to overcome the shadowing from the indoor
obstacles and moving human bodies. In slowly varying log-
normal fading channels, the small- and large-scale effects
tend to get mixed, and the log-normal statistics tend to dom-
inate and to accurately describe the distribution of the
channel path gain [2].

In most scattering environments, antenna diversity is a
practical and convenient method aiming at ameliorating
the detrimental effects of multipath fading. A simple trans-
mit diversity scheme for two transmitting antennas was first
introduced by Alamouti [3] and generalised to an arbitrary
number of antennas as space–time block coding (STBC)
by Tarokh et al. [4]. Considerable research efforts have
been devoted in recent years for the average capacity and
the BER performance, when applying multiple-input
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multiple-output (MIMO) diversity and STBC to fading
channels [5–12].

The Shannon average capacity provides important infor-
mation for the maximum transmission rate of wireless
communications systems. On writing this paper, the
capacity limits of wireless communications fading channels
are of the utmost interest, because they represent an opti-
mistic bound for practical communications systems. The
Shannon capacity of a MIMO channel is not always easy
to estimate, usually because of the difficulty that arises
when it is necessary to find the distribution of the sum of
the random variables (RVs) that represent the paths of the
MIMO channel. To overcome this difficulty, some capacity
bounds are proposed in the literature; Cui et al. [13] have
suggested an upper and a lower bound for the capacity of
MIMO correlated Rician fading channels, while Loyka
and Kouki [14] have proposed an upper bound on the
mean MIMO channel capacity. The MIMO capacity in
fading environments has been shown to grow significantly
if the number of antennas is increased both at the transmitter
and at the receiver [8, 15]. As already known, the achieved
information data rate of an STBC system is well below the
theoretical capacity limit of the MIMO channel [9]. Further,
the number of transmitting and receiving antennas, NT and
NR, respectively, are combined to produce a diversity gain
of order NT � NR.

Regarding the BER performance of a STBC system in a
Rice distribution environment, the BER can be easily
evaluated. Nevertheless, when log-normal distribution is
considered, there is difficulty in analytically evaluating the
exact average BER arising from the fact that not closed-form
expression for the moment generating function (MGF) is
known; it can only be approximated as yet. Research has
therefore concentrated on approximations for this unsolvable
problem with several approximate methods so far suggested
[16, 17]. In the work of Slimane [18], some performance
bounds have been suggested for the distribution function
and recently, Berggren and Slimane [19] have proposed a
lower bound for the outage probability. In [20], closed-form
expressions as well as bound approximations are investigated
for the outage probability, the average allocated power,
the achievable spectral efficiency and the BER over
Nakagami-m fading channels in a single-input single-output
(SISO) environment.
IET Commun., 2007, 1, (1), pp. 86–91



In this paper, an invertible and closed-form upper bound
for the average capacity in Rician or log-normal fading
environments is derived using Jensen’s inequality. This
bound is then tested in two different STBC schemes, to
corroborate the proposed mathematical analysis. An upper
bound for the BER of a log-normal fading channel is
proposed, based on the arithmetic-geometric mean
inequality and on the capability of a MIMO channel that
can be equal to a SISO one. This bound is tested in three
different STBC schemes and in three different
phase-shift-keying (PSK) modulations. Furthermore, we
examine by analysis and simulation the exact BER perform-
ance of a Rician fading channel model, testing it in the same
STBC schemes and PSK modulations as in the log-normal
fading channel BER analysis.

2 System and channel model

We consider a STBC system with NT transmitting and NR

receiving antennas, hereafter referred to as STBC NT

�NR, operating in a quasistatic flat fading channel, so that
the path gains are constant over a frame period and vary
independently from one frame to another. The system trans-
mits a block of K symbols of energy Es, produced from a
complex or real signalling modulation, during a period
of T timeslots. The symbols fxkgk¼1

K are encoded by a
STBC, creating a T � NT column orthogonal transmission
matrix with linear combinations of x1, x2, . . . , xK and
their conjugates. The code rate R of STBC is determined
by R ¼ K/T. It should be mentioned that STBC achieves
the maximum possible transmission rate for any number
of transmitting antennas when using any arbitrary real con-
stellation (e.g. M-PAM). On the other hand, for an arbitrary
complex constellation (e.g. M-PSK and M-QAM), full-rate
exists only for two transmitting antennas, while, for other
cases, R is below unity (3/4 for three and for four transmit-
ting antennas and 1/2 for all the other transmitting antenna
schemes, i.e. NT � 5) [4]. The channel gain from the ith
(i ¼ 1, 2, . . . , NT) transmitting to the jth ( j ¼1, 2, . . . ,
NR) receiving antenna is denoted as hi,j and is modelled as
a complex RV with its phase uniformly distributed within
[0, 2p), whereas its envelope ci,j ¼ jhi,jj is distributed
according to one of the well-known Rice or log-normal dis-
tribution families. The corresponding probability density
functions (PDFs) are given by [21, eq. (2.16) and (2.53)]

pgðgÞ ¼
ð1þ KÞe�K

�g
exp �

ð1þ KÞg

�g

� �

� I0 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ KÞKg

�g

s !
; g � 0 ð1Þ

for the Rice distribution, where K is the Rician factor and
I0(.) is the zero-order modified Bessel function of the first
kind, and

pgðgÞ ¼
jffiffiffiffiffiffi

2p
p

sg
exp �

ð10 log10 g� mÞ2

2s2

� �
ð2Þ

for the log-normal distribution, where j ¼ 10/ln 10 ¼
4.3429, and m (dB) and s (dB) are the mean and the
standard deviation of 10 log10g, respectively.

Moreover, the instantaneous input signal-to-noise ratio
(SNR) for the STBC system is defined as

gi;j ¼
Es

N0

jhi;jj
2

ð3Þ
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and the channel gain matrix H as

H W

h1;1 h2;1 � � � hNT ;1

h1;2 h2;2 � � � hNT ;2

..

. ..
. . .

. ..
.

h1;NR
h2;NR

� � � hNT ;NR

2
66664

3
77775 ð4Þ

The entries of H are assumed to be uncorrelated, but not
necessarily identically distributed, with arbitrary values
for the fading severity parameters. Furthermore, it should
be noted that perfect knowledge of the channel matrix H
is assumed at the receiver.

3 Upper bound for the average capacity

The evaluation of the average capacity, in a generalised
fading environment, needs statistical averaging over the
PDF of the instantaneous SNR. However, in many cases,
this PDF is either unknown (e.g. at the output of equal-
gain-combining (EGC) receivers), or is in such a compli-
cated form (e.g. Rice fading) that it does not lend itself to
this averaging. To overcome this difficulty, we present an
invertible tight closed-form upper bound in terms of the
average SNR.

For a signal’s s transmission bandwidth BW and energy
Es ¼ 1kjsj2l (with 1k.l denoting averaging) over the additive
white Gaussian noise (AWGN) channel with a single-sided
power spectral density (PSD) N0, the Shannon capacity is
given by

Cg ¼ BW log2ð1þ gÞ ð5Þ

where g indicates the constant received SNR per symbol.
When the same signal s is transmitted over a fading

channel, it experiences multiplicative fading of the envel-
ope of h. Hence, g is a RV and is written as

g ¼
Es

N0

jhj2 ð6Þ

The Shannon capacity can also be considered as a RV,
because Cg is straightforwardly connected to g in (5). The
average channel capacity can be obtained by averaging Cg

over the PDF of g at the output of the receiver [22], that is

�Cg ¼ BW

ð1

0

log2ð1þ gÞfgðgÞ dg ð7Þ

To overcome the already mentioned difficulties (nescience
or complicated form of fg(.)) of evaluating the average
capacity in closed form, a tight bound for �Cg can be
derived using Jensen’s inequality, because log2(1þ x) is a
concave function for x [ [0, 1)

1k log2ð1þ gÞl � log2ð1þ 1kglÞ ð8Þ

Hence, by applying (8) in (5), C̄g can be upper bounded as
given by the following simple expression

�Cg � BW log2ð1þ �gÞ ð9Þ

where ḡ is the average SNR per symbol at the output of the
receiver, ḡ ¼ VEs/N0, with V ¼ 1kjhj2l being the average
fading power.

From (9), we observe that this upper bound is invertible,
meaning that the average SNR can simply be expressed in
terms of average capacity as

�g � 2
�Cg=BW

� 1 ð10Þ
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Also, comparing (9) with (5), we can see that the capacity of
a fading channel is always less than the capacity of an
AWGN channel with the same average power [23].
Hence, (9) provides an upper bound for the average
channel capacity, requiring only knowledge of a closed-
form expression for the received output SNR.

From this it can be concluded that, if we consider a
regular adaptive transmission system, in which the users
adapt their rates according to the instantaneous SNR, then
the average capacity of these users will be a function of
the average SNR that they are experiencing. In this case,
the bound proposed in (9) gives an accurate evaluation of
this average capacity as a function of the average SNR.

The convenient general STBC capacity expression is
given in matrix form by [7, 8]

Cstbc ¼ BW R log2 det INR
þ

Es

NT RN0

HHy
� �� �

ð11Þ

where INR
is an NR � NR identity matrix and H† denotes the

transpose conjugate of the channel matrix H. Following the
analysis of [8, 9]

Cstbc ¼ BW R log2 1þ
Es

NT R N0

XNT

i¼1

XNR

j¼1

jhi;jj
2

 !
ð12Þ

and based on the inequality (9), the bound for C̄stbc

measured at the output of STBC system can be expressed
as a function of the channel components

�Cstbc � BW R log2ð1þ �gstbcÞ ð13Þ

where, based on [24]

�gstbc ¼
Es

NT RN0

XNT

i¼1

XNR

j¼1

jhi;jj
2 ð14Þ

which corresponds to the equivalent Gaussian SISO model
for the average output SNR [9].

4 Error-rate analysis

4.1 Rician fading

As far as the Rician channel is concerned, the BER perform-
ance is quite an easy task to compute, using the well-known
formula for the MGF of the Rice fading model [21, equation
(2.17)]

MgðsÞ ¼
ð1þ KÞ

ð1þ KÞ � s �g
e Ks �g=ð1þ K � s �gÞ
� �

ð15Þ

Thus, to evaluate the BER we need to find the distribution of
a sum of Rician RVs. Regarding the instantaneous SNR and
the MGF, we have

g ¼
XNT NR

i¼1

gi ð16Þ

and

MgðsÞ ¼
YNT NR

i¼1

Mgi
ðsÞ ð17Þ

Knowing this MGF, the BER for M-PSK modulation is
calculated using the integral [21, equation (5.78)]

Pe ¼
1

p

ððM�1Þp=M

0

Mg �
a

2

2 sin2 u

� �
du ð18Þ
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where a2 is a constant that depends on the specific modulation/
detection combination and is equal to a2 ¼ 2 sin2(p/M).

4.2 Log-normal fading

When the fading channel is log-normal, as no closed-form
expression is known, the MGF can only be approximated
by [21, equation (2.54)]

MgðsÞ ’
1ffiffiffiffi
p
p

XNp

n¼1

Hxn
exp 10

ffiffi
2
p

s xnþmð Þ=10
s

h i
ð19Þ

where xn are the zeros of the Np-order Hermite polynomial,
Hxn

are the weight factors of the Np-order Hermite poly-
nomial, and m (in dB) and s (in dB) are the mean and the
standard deviation of 10 log10g, respectively, as in (2).

Based on the arithmetic-geometric mean inequality,
which says that the geometric mean is less than or equal
to the arithmetic mean

a1 þ a2 þ � � � aN � N ða1a2 � � � aN Þ
1=N

ð20Þ

and on the assumption that a log-normal distribution is
generally produced by a normal one, i.e. if x is a normal
variable, then ex is a log-normal one, from (14) and (16)
we obtain for the instantaneous SNR

gstbc ¼
Es

NT RN0

XNT�NR

l¼1

jhlj
2
¼

Es

NT RN0

XNT�NR

l¼1

ðexl Þ
2

�
Es

NT RN0

ðNT NRÞ �
YNT�NR

l¼1

ðexl Þ
2

� �1=ðNT NRÞ

¼
EsNR

N0R
exp

2

NT NR

� � XNT�NR

l¼1

xl

" #
ð21Þ

where xl are normal variables with mean m and variance y .
The argument of the exponential factor is also equivalent

to a normal variable, with mean

mb ¼ 2m ð22Þ

and standard deviation

sb ¼
2

NT NR

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y ðNT NRÞ

p
ð23Þ

Finally, from (18), (19), (21), (22) and (23), we obtain the
upper bound for the BER of a log-normal fading channel
when STBC is applied

P̂e¼
1

p

ððM�1Þp=M

0

1ffiffiffiffi
p
p

XNp

n¼1

(

Hxn
exp 10ð

ffiffi
2
p
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�
EsNR

N0R
�
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2
p
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	h

�
EsNR

N0R
�

a2

2sin2u

��
du ð24Þ

The integral in the last equation is easy to evaluate when
applying binary-phase-shift-keying (BPSK) modulation
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(M ¼ 2), so (24) reduces to

P̂e ¼
1

2
ffiffiffiffi
p
p

XNp

n¼1

Hxn

� 1� erf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10ð
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2
p

sbxnþmbÞ=10 �
EsNR

N0R

s ! !
ð25Þ

However, in the case that quadrature phase-shift keying
(QPSK) (M ¼ 4) and 8-PSK (M ¼ 8) modulations are
applied, the integral in (24) can only be evaluated with
numerical analysis methods. In our work, the integral is
numerically evaluated with the help of Maple and Matlab
and the results are presented in Section 5.

5 Numerical evaluation and simulation results

The results of the upper bound for the normalised to BW
average STBC capacity (C̄STBC/BW ) and the BER perform-
ance are presented here. The results were obtained by
running multiple simulations, to minimise the statistical
errors and to assure the validity of the results. The simu-
lation curves were created by evaluating a system, transmit-
ting 222 (4194304) data bits to achieve illustration of low
BER. The STBC systems examined here are the STBC
2 � 1, STBC 3�1 and STBC 3 � 2, and are tested in the

Fig. 1 STBC capacity for Rician fading channel

Fig. 2 STBC capacity for log-normal fading channel
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two aforementioned environments; the Rician and the log-
normal fading channels. The STBC 2�1 is examined
because it is the simplest STBC application. The STBC
3�1 and 3�2 are taken into consideration, to examine
some other STBC schemes apart from Alamouti’s proposal,
with lower than unitary rate (R ¼ 3/4). It should be
mentioned here that full rate full diversity STBC exists
for any number of transmit antennas when real orthogonal
designs, like BPSK modulation, is considered. The STBC
scheme of rate R ¼ 3/4 considered for three transmit
antennas is introduced in [4], thus we omit illustrating the
transmission matrix. Furthermore, it should be mentioned
that the modulation techniques taken into account are the
BPSK, QPSK and 8-PSK.

5.1 Capacity

The parameters for the evaluated Rician channel are the
Rician factor K, which is chosen to be 3 dB, and the var-
iance, which is set to 0.1. On the other hand, for the
normal sequence used to generate the log-normal channel,
the mean and the standard deviation have been chosen to
be 0 and 0.1, respectively.

Based on the mathematical analysis in Section 3, we
obtain the results for the analytical bound and the simulation
of two STBC schemes (STBC 2�1 and STBC 3 � 2) in

Fig. 3 BER analysis for Rician fading channel with BPSK
modulation

Fig. 4 BER analysis for Rician fading channel with QPSK
modulation
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each of Figs. 1 and 2 regarding Rician and log-normal
fading channel, respectively. The symbols without line cor-
respond to the capacity of the simulated system, while the
solid line corresponds to the upper bound.

From the presented results, it can be seen that the pro-
posed bound is very tight, regardless of the environment
and the STBC scheme that is examined. Even though in
both Figures the simulations’ symbols are very close to
the upper bound curves, they are always below the analyti-
cal curves in all the SNR range.

5.2 Bit error rate

The BER performance for the Rician channel is exhibited in
Figs. 3–5, applying BPSK, QPSK and 8-PSK modulations,
respectively. The solid line shows the analytical per-
formance of the systems under study, stemming from the
mathematical analysis given in Section 4, and the symbols
without line show the simulations’ results. The simulations’
symbols have some fluctuations with respect to the analyti-
cal curves, because of the statistical errors generated from
the noninfinite number of the simulated bits.

In Figs. 6–8, the credibility of the upper bound for the
BER in a log-normal fading environment is examined,
when applying BPSK, QPSK and 8-PSK modulations,

Fig. 5 BER analysis for Rician fading channel with 8-PSK
modulation

Fig. 6 BER analysis for log-normal fading channel with BPSK
modulation
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respectively. Again, with the solid line, we show the
analytical results of the proposed upper bound and with
the symbols without line we show the simulation results
in each STBC scheme.

The parameters chosen for the BER analysis in both
channel environments are the same with the ones taken
into consideration in the capacity analysis. However, for
the upper bound curves of the BER of the log-normal
environment, equations (21)–(23) indicate the parameters
for the log-normal distribution, which are for the STBC
2 � 1, the mean is equal to 0 and the standard deviation
is equal to 0.1414; for the STBC 3 � 1, the mean is equal
to 0 and the standard deviation is equal to 0.1155, and,
for the STBC 3�2, the mean is equal to 0 and the standard
deviation is equal to 0.0816. Finally, the abscissas and the
weight factors for the Np-order Hermite polynomial are
taken from [25, Table 25.10], with the order of the poly-
nomial chosen to be Np ¼ 20, so as to achieve better
accuracy.

From all the presented Figures, comparing the perform-
ance evaluation results to accurate computer simulation
ones, it is evident that the proposed bounds for both the
average STBC capacity and the BER are very tight. Hence,
the proposed formulations provide accurate expressions
for evaluating these performance characteristics.

Fig. 7 BER analysis for log-normal fading channel with QPSK
modulation

Fig. 8 BER analysis for log-normal fading channel with 8-PSK
modulation
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6 Conclusions

In this work, we examined the capacity and BER of STBC
wireless communications systems. In particular, a closed-
form upper bound for the capacity of wireless systems oper-
ating in either log-normal or Rician fading environments is
derived. As far as the BER performance is concerned, albeit
that it has been the subject of extensive research over the
years, to the best of the authors’ knowledge, there exists
no study that grapples with this meaningful issue in log-
normal fading environments to date. Toward this end, a
tight upper bound for the BER has been presented. The
validity of the proposed analysis was reinforced by
numerical simulations for different STBC schemes and
different PSK modulations. The analysis presented in this
paper paves the way for an accurate evaluation of the
performance of wireless systems in several fading
environments.
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