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Summary

The performance of a DMT system, which transmits information over channels with varying characteristics

through the frequency zones, is improved when the subchannels of the system are loaded with variable data rate. In

this study, we meet the bit loading problem of the subcarriers of a DMT system. We propose two new optimum-

loading algorithms with low computational complexity. These algorithms assign integer number of bits

successively until a target bit rate is fulfilled. We compare them with several existing algorithms in terms of

transmitting energy versus data rate and complexity versus system’s characteristics i.e. number of subcarriers and

target data rate. Simulations prove that without sacrificing optimality both our proposals present a lower

complexity level. Copyright # 2004 John Wiley & Sons, Ltd.
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1. Introduction

In wireless multicarrier communications, the trans-

mission of varying number of bits over different

subcarriers improves system performance [1]. The

adaptation of the subcarrier bit rate to channel char-

acteristics constitutes the basic concept of a loading

algorithm. The parameters to be considered in such a

loading algorithm are the data rate, the bit error rate

and the total transmitting power.

Generally, the loading problem can be formulated

as follows: one parameter is being optimized (either

maximized or minimized) whereas the other two

impose the constraints of the problem. The algorithms

proposed in the literature so far aim to maximize the

rate and minimize the error rate or the transmission

power resulting in a non-integer bit distribution Ri

over the i subchannels, but since the quadrature

amplitude modulation (QAM) leads to constellations

with integer number of bits assigned to every modula-

tion signal, in a last step of the loading algorithm the

non-integer number bit distribution has to be rounded

to integers [2,3,4].

However, there is a category of loading algorithms

that minimize the power or maximize the rate for a

fixed error rate assigning to channels an integer

number of bits in every step of the algorithm, avoiding

the final rounding of the bit distribution [5–9]. These

algorithms work based on the so-called greedy ap-

proach of the problem i.e. the successive bit assign-

ment to the carriers until RT bits are assigned. In every

algorithmic iteration one bit is added to the carrier that
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Division, Aristotle University of Thessaloniki, Panepistimioupolis of Thessaloniki, 54124 Thessaloniki, Greece.
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introduces the minimum overall energy increase aim-

ing to minimize the total transmitting energy.

In this study, two new bit loading algorithms are

proposed. Both of them assign bits to the subcarriers

of a DMT system iteratively until the constraints are

fulfilled. However, the procedure of the bit assignment

is accelerated since the bits are not distributed one by

one but in groups. This is the major innovation that the

described algorithms introduce. The first proposal

works on the table of the incremental energies �Pi;j

(see Figure 1). The second proposal, which is even

more expeditious than the first concerning the number

of comparisons, works on the normalized incremental

energies �Pi; j normalized
. These quantities are proved in

Section 4 that encloses information about the number

of bits j1 that subcarrier i can be loaded with when the

best subcarrier of all in terms of CNR (channel to

noise ratio) is loaded with known bit load j2.

In the following sections, the greedy approach is

analyzed and the conditions under which it reaches the

optimal solution are explained. Then, the two new bit-

loading algorithms are described step by step, exam-

ining the complexity that is inserted. Finally, a com-

parison of several existing algorithms and our

proposals are given on the same transmission channel.

The comparisons are made in terms of transmitting

energy versus data rate and complexity versus sys-

tem’s characteristics i.e. number of subcarriers and

target data rate. Diagrams expressing complexity

versus system parameters show the improvement

that our proposals introduce compared to the well-

known algorithms.

It should be clarified that in the rest of the paper,

perfect channel estimation is assumed and channel

variations are slow and followed accurately by the

channel equalizer.

2. The Greedy Approach

Assume that we aim to load every DMT symbol with

RT bits, for a predetermined BER transmitting as less

energy as possible. Let us denote the jth bit conveyed

by the ith subcarrier by the ordered pair ði; jÞ [9]. This

ordered pair has a respective weight �Pi;j correspond-

ing to the incremental energy that is added to the

system’s aggregate energy consumption. Hence, the

constrained problem is formulated as follows: Mini-

mize PT ¼
P

�Pi;j when the summation of j of the

pairsði; jÞ for i ¼ 1; . . . ;Nj 2 ½1;Rm� is greater than

RT . N is the number of subcarriers and Rm the

maximum allowable number of bits per carrier. This

is clearly an optimization problem. When searching

for the optimal solution of such a problem search may

progress in one of several ways, depending on the

structure of the problem. There are three major

approaches: exhaustive search, dynamic program-

ming and greedy. We will examine the latter. Its

principle is simple. One starts with a partial non-

feasible solution and at each stage a partial solution is

maintained iteratively until a feasible solution has

been found [10,11]. The partial solution is searched

in sets of partial solutions one of which is known to

lead to the optimal solution. The greedy procedure

produces the optimal solution under certain character-

ization of the sets of the partial solutions. Those sets

must be parts of a matroid [10 pp. 390, 12]. A matroid

is a family of sets that have some special properties.

One of the equivalent definitions of the matroid

follows. Let E ¼ fe1; . . . ; eng be a finite set of n

elements. We call a matroid on E a pair M ¼ ½E;��
where � is a family of subsets of E satisfying the

following axioms:

(1) Ø 2 � where Ø is the empty set.

(2) If X 2 � and Y � X then Y 2 �.

(3) If U;V are members of � with Uj j ¼ Vj j þ 1

there exists ei 2 UnV such that V [ feig 2 �.

If we accomplish to prove that our problem has a

matroid structure, then a greedy algorithm reaches a

solution that is guaranteed to be optimal. Recall the

pairs ði; jÞ defined in the beginning of this section and

collect all these pairs into the set E ¼ fði; jÞ :
1 � i � N; 0 � j � Rmg. Let us construct the fa-

mily � of sets of E with cardinality not greater than RT

i.e. � ¼ fF � E : Fj j � RTg. The pair M ¼ ½E;�� is

proved in Reference [9] to be a matroid and hence a

greedy algorithm working on that matroid will reach

the optimum solution.

Fig. 1. An example of a DMT system with ten subcarriers
and maximum allowable number of bits/subcarrier equal

to 5.
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The simplest greedy algorithm is to distribute the

bits one at a time at the subcarrier that introduces the

least additional energy to the system. Thus, in every

iteration, the algorithm should perform successive

comparisons until the best subcarrier is located. The

algorithm will execute RT iterations until all bits are

assigned. An algorithm based on this fundamental

structure seems to have a complexity that is bounded

by RT iterations, as this is a minimum number of

iterations needed to assign RT bits.

In Reference [10 pp. 393], a greedy algorithm is

proposed to work on the elements of the set E of the

matroid M that are in order of increasing weights. The

algorithm (see Appendix A) reaches the optimum

solution, i.e. a set F with Fj j ¼ RT , which has the

minimum weight PT ¼ minWfFg compared to all the

other sets F0 2 � with F0j j ¼ RT .

There is also one last thing that has to be stated

before proceeding to Section 3. Let us assume a DMT

system with ten subcarriers and maximum QAM

constellation size that can support up to 5 bits/sub-

carrier. Figure 1 shows the incremental energies that

are required for a transition of each subcarrier from a

lower QAM mode to the next one. The bold arrows are

used to distinguish those �Pi;j that consist of the

optimum final bit distribution. We should emphasize

here that for every subcarrier k the distribution cannot

be non-continuous. In other words, in the increasing

order of the weights it should not be �Pk;jþ1 < �Pk;j.

This is ensured by Proposition 1.

Proposition 1. If �Pk;jþ1 belongs to the optimum

distribution then �Pk;j belongs to it as well. For the

proof of this proposition refer to Appendix B.

Proposition 2 that follows originates directly from

the matroid structure of the optimization problem and

Proposition 1.

Proposition 2. Suppose that we aim to transmit RT

bits minimizing the total transmitting energy. The

optimum bit distribution will consist of the RT smal-

lest �Pk;z out of all �Pi;j i ¼ ½1; . . . ;N�,
j ¼ ½1; . . . ;Rm� otherwise the distribution would not

be optimum.

Based on these two propositions, we describe a

simple greedy bit loading algorithm.

3. Proposal 1

3.1. Description of the Algorithm

Note that the criterion for a subchannel selection in

order to add one more bit is based on the incremental

energies �Pi;j. Therefore, the calculation of the �Pi;j

seems to be unavoidable. For a system with N sub-

carriers that can carry up to Rm bits per carrier, we

have NRm calculations according to Equation (1):

�Pi;j ¼
SNRðPe; jÞ � SNRðPe; j� 1Þ

gi
ð1Þ

where gi is the signal to noise ratio of the ith

subchannel for unit transmitting energy and

SNRðPe; jÞ is the signal to noise ratio that is necessary

to guarantee a probability of error less or equal to Pe

for a QAM system allocating j bits. Thus, we formu-

late vector y.

y ¼ ½�P
ð1Þ
1;1; �P

ð2Þ
2;1; . . . ; �P

ðNÞ
N;1; �P

ðNþ1Þ
1;2 ; �P

ðNþ2Þ
2;2

; . . . ;�P
ð2NÞ
N;2 ; . . . ;�P

ðN�RmÞ
N;Rm

� consisting of the suc-

cessive N-ary sets of the incremental energies. Every

set respects the transitions of all subchannels from a

QAM mode to the next one. So, we will have Rm sets.

The ranking position k of the �P
ðkÞ
i;j element in vector

y can provide the subcarrier to whom �P
ðkÞ
i;j belongs to

using Equation (2)

i ¼ modðk;NÞ ð2Þ

Index k can also give the jth QAM mode that �P
ðkÞ
i;j

refers to using Equation (3)

j ¼ k=Nd e ð3Þ

where xd e is the smaller integer that is greater or equal

to x.

According to Proposition 2 of Section 2, we need

the RT smallest �Pi;j. Thus, we have to sort the

elements of vector y in ascending order. This way

we formulate vector w. Simultaneously, we keep in

vector p the initial ranking positions that the sorted

elements of vector w used to have in y. That is,

wðkÞ ¼ yðpðkÞÞ. Obviously vector w does have in its

first RT positions, the incremental energies �Pi;j that

belong to the optimum distribution. Thus, we mana-

ged to locate the �Pi;j of interest without any algo-

rithmic iteration apart from the sorting.

Beginning from the greatest incremental energy

k ¼ RT and moving towards the smallest k ¼ 1, we

assign j ¼ pðkÞ=Nd e bits to the i ¼ modðpðkÞ;NÞ
subcarrier. Obviously, if modðpðkÞ;NÞ ¼ 0 then

i ¼ N. Furthermore, based on Proposition 1 of

Section 2, if the ith subcarrier has already been

assigned bits, then it does not need to be assigned

with bits any more.

Alternatively, in order to avoid the divisions that are

introduced by Equations (2) and (3), we could add a

Q3DMT SYSTEMS BASED ON THE GREEDY APPROACHQ3 3
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buffer that would store for every �Pi;j, the subcarrier i

and the modulation mode j that refers toQ1, in two

successive memory cells. Then vector p would consist

of pointers locating the address of the first byte of the

buffer with respect to every �Pi;j.
z One memory cell

would be used to store the subchannel’s identity

number and a second memory cell to store for that

specific subchannel the optimum QAM mode. Thus,

the extra memory that is needed is 2 � N, which is

relatively small compared to the avoidance of RT þ N

divisions.

3.2. Complexity Analysis

The initial calculation of the �Pi;j includes NRm

divisions provided that the SNRðPe; jÞ were pre-

computed and stored in a table matrix. Equal table

accesses are also necessary in order to supply Equa-

tion (1) with the appropriate SNR. At this point, we

should mention that a table access is a rather quick

procedure for contemporary processors and that is

why in some papers table accesses are not counted in

the complexity evaluation.

The sorting part of the algorithm consists of

NRmlog2NRm comparisons. The proposed algorithm

can be further accelerated if the sorting algorithm

stops just after it locates the RT smallest �Pi;j avoid-

ing to sort NRm � RT elements unnecessarily. This

could result in a complexity on average equal to

RT log2ðNRmÞ.
Finally, the bit allocation leads to RT divisions at

maximum in order to find all the subcarriers, whereas

the allocation of bits includes N divisions. Alterna-

tively, using the buffer with size 2 � N, we can avoid

the last RT þ N divisions, increasing the table ac-

cesses by a factor equal to the memory increase.

The algorithm’s complexity is summarized in Table I.

4. Proposal 2

4.1. Description of the Algorithm

This second algorithm is in fact the first optimum

proposal whose development is accelerated. From the

description of the first proposal, we see that the major

complexity is introduced by the sorting of the �Pi;j

elements. If we knew the sorted position of each �Pi;j

relatively to the others and all of them relatively to a

reference position then this information could accel-

erate the location of the smallest �Pi;j.

From Equation (1) for two subchannels k; l that

carry j bits and satisfy gk > gl we get �Pk;j < �Pl;j.

Thus, the sorted gi can give us information about

the relative positions of the incremental energies when

the subcarriers are on a common QAM mode (i.e. the

same j in Equation (1)). Also, for the same subcarrier

k, we have proved in Appendix B that

�Pk;jþ1

�Pk;j
¼ 2 ð4Þ

The ratio of relation (4) (which is independent of gi)

seems to determine when the kth carrier will change

mode from j to jþ 1. A thorough explanation follows.

Let us assume that we sort the gi in descending

order g1 > g2 > g3 > � � � > gN. We start to assign bits

successively. The first bit will be allocated to the 1st

subcarrier, which will transit from 0 to 1 QAM mode.

zThe memory increase for a complexity reduction is a
widespread method used in numerical analysis. This method
is used for example by the sorting algorithms in order to
decrease complexity from OðN2Þ to OðN log2 NÞ.

Table I. Complexity analysis of the examined algorithms in the literature and our proposals.

Number of Number of divisions/multiplications/ Table accesses Extra memory
comparisons additions/subtractions

H–H ðN � 1ÞRT RT þ N � 1 RT þ N � 1 —
Lai et al. Nlog2ðNÞ þ RT ðRm � 1Þ RT þ Rm � 1 RT þ Rm � 1 N
Proposal 1 RT log2ðNRmÞ NRm NRm þ 2N 2N
Proposal 2 2Nlog2N þ N N þ N — N
Czylwik ðRT � msÞN þ 2N � I N �M§ N —
Piazzo Nlog2N þ ðRm � 2Þlog2RT 8ðRm � 2Þlog2RT — N
Krongold et al. NRmlog2ðN � RmÞ ð4N þ 1Þlog2ðN � RmÞ NRm —
Fischer–Huber I1 þ Nlog2N þ I2 � D N �M N —
Sonalkar ðN � 1ÞL where L is equal to ðRmN � RT Þ RmN � RT þ N � 1 RT þ N � 1 —

or imposed by the PSD mask and RT

Baccarelli ðN � 1ÞRT N — —
Campello ðN � 1ÞRT RT þ N � 1 RT þ N � 1 —

§The algorithm comprises the calculation of logarithms. M is the order of the complexity for calculating one logarithm.

Q1
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The second bit will be allocated to the second

subcarrier for which we will have also the transition

from 0 to 1 QAM mode. The first subcarrier will take

its second bit before the kth subcarrier will get its first

bit if

�P1;2 < �Pk;1 ! SNRðPe; 2Þ � SNRðPe; 1Þ
g1

<
SNRðPe; 1Þ � SNRðPe; 0Þ

gk

! g1

gk
>

SNRðPe; 2Þ � SNRðPe; 1Þ
SNRðPe; 1Þ � SNRðPe; 0Þ

ð5Þ

Using the upper bound of probability of error for j

mode QAM [13] (whose validity limits are shown in

Appendix B) we get:

Pe ¼ 4Q

ffiffiffiffiffiffiffiffiffiffiffiffi
3SNR

2j � 1

r !
! SNRðPe; jÞ

¼ Q�1 Pe

4

� �� �2
2j � 1

3
ð6Þ

From Equations (5) and (6), we get after some

manipulations ðg1=gkÞ > 22�1.

Thinking in the same way, the 1st subcarrier will

get its jth bit before the mth get its first if

g1

gm
> 2j�1 ð7Þ

We notice that if we get the ratios g1=gi, then we have

information about the positions of the �Pi; j relatively

to the best subchannel and additionally if �Pm;1

belongs to the final optimum distribution and inequal-

ity (7) is satisfied, then �P1;j also belongs to it.

Hence, if we compare the sorted order of g1

gi
with the

constants 2j�1 for j ¼ 2; 3; . . . then we get information

about the QAM mode switching of the 1st subcarrier.

In the general case, with k < l the kth carrier will

get j2 bits before the lth carrier gets j1 bits if

�Pk;j2 < �Pl;j1 !
g1=gl
g1=gk

> 2j2�j1 ð8Þ

Please notice that number 2 raised in the power j2 � j1
can be used to determine the QAM mode switching

for every carrier.

Before describing the steps of the second proposal,

it will be useful to recall from Appendix B that

�Pi;j ¼
fQ�1ðPe=4Þg2

3

2j�1

gi
ð9Þ

If we multiply all �Pi;j with 3g1=½Q�1ðPe=4Þ�2 then

we take the normalized incremental energies

�Pi; j normalized
¼ g1

gi
2j�1 ð10Þ

without affecting their relative position. Please notice

again that the normalized incremental energy refer-

ring to the QAM mode transition j� 1 ! j equals the

Fig. 2. Successive bit allocation to the subcarriers according to their relative position towards the best subchannel. Within the
same frame are the groups of the bits that are allocated in every algorithmic cycle. When the algorithm ends, the Rtot � RT

greatest �Pi;j will be searched among the last allocating group.

DMT SYSTEMS BASED ON THE GREEDY APPROACHQ3 5
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multiplication of the relative position of gi towards g1

with 2 raised to the power j� 1.

Based on these arguments, we propose a short

algorithm that leads to the optimum bit distribution.

Suppose that we have sorted gi in descending order.

Then we divide g1 successively with gi forming the

ratios g1=gi of Figure 2. Compare the ratios g1=gi with

the constant boundary ¼ 21. When g1=gk > boundary

then the subcarriers i ¼ 1; . . . ; k � 1 are loaded with

their first bit. If RT > k � 1, then the bit distribution

should continue. We update the boundary ¼ 22 and

continue the comparisons. Now the carriers that have

their relative positions towards g1 is greater than 21

and are loaded with their first bit. Simultaneously, the

carriers for i ¼ 1; . . . ; k � 1 are candidates to be

loaded with a second bit because this transition will

be equal to the multiplication of their relative position

towards g1 with 21 (see Equation (10)). Thus, the

algorithm goes on comparing the g1=gk; g1=gkþ1; . . .
with the new boundary ¼ 22 until we find the lth

subcarrier for which we have ðg1=glÞ > 22. At that

point, the algorithm has distributed Rtot ¼ k�
1 þ l� 1 bits. If RT > Rtot then we update

boundary ¼ 23 and continue the comparisons. The

bit distribution is made in groups as Figure 2, shows.

In Figure 2, every group is rounded by a different

frame. If RT < Rtot then we allocate Rtot � RT redun-

dant bits that have to be rejected. These bits belong to

the Rtot � RT greater than �Pi;j located in the last

group assignment (Figure 2 with the dash-dotted

frame). All the other �Pi;j of the distribution have

a relative position towards �P1;1 that is smaller than

the penultimate boundary, whereas the �Pi;j of the

last group are greater compared to the penultimate

boundary. In Figure 2, the algorithm stops when

boundary ¼ 16 and the penultimate boundary ¼ 8.

Obviously, if we calculate the �Pi; j normalized
of the

last group and then sort them in ascending order, then

we can easily distinguish the Rtot � RT greater and

subtract one bit from the respective subcarriers. This

is the second sorting that the evolution of the algo-

rithm imposes. A flow chart of the algorithm is shown

in Figure 3.

At this point, we should mention that if a maxi-

mum QAM constellation size imposes an upper

bound to the number of bits that a subcarrier can be

loaded with, then carriers that obtain this maxi-

mum number of bits are excluded from the con-

tinuation of the algorithm. Because of the nature of

the development of the algorithm, we expect these

carriers to be located at the lower part of the array of

g1=gi.

4.2. Complexity Analysis

In the first part, the algorithm begins with the for-

mulation of the order g1=g1; g1=g2; g1=g3; . . . ; g1=gN.

So, this part entails Nlog2N comparisons and N

divisions. In the second part, we have successive

comparisons of the g1=gi with the updated boundary.

In the case that all subcarriers are used we have at

maximum N comparisons.

Finally, in the last part the algorithm ends formulat-

ing �Pi; j normalized
and sorting them in ascending order. If

z is the number of the subcarriers of the last group,

then this part introduces z multiplications and zlog2z

comparisons. In the worst case, it should be z ¼ N so

Fig. 3. Flowchart of Proposal 2.
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the worst scenario introduces N multiplications and

Nlog2N comparisons. Table I summarizes the com-

plexity of the three parts of the algorithm.

5. Performance Comparison of Existing
Algorithms and our Proposals

5.1. Energy Versus Data Load

We have simulated some important algorithms known

in the References [3,5–9,14,16,17] and our proposals.

The algorithms simulated worked on a target data rate

mode and we have plotted all of them on Figure 4. The

performance comparison is made in terms of the

normalized energy transmission per bit for different

data rates per DMT symbol. The algorithms present

almost the same performance with the exception of

Piazzo’s algorithm which is suboptimal (it presents a

deteriorated performance compared to the others that

fluctuate between 0.2 and 0.3 dB on average) as

expected [14]. In fact, zooming in the figure the

systems present slight differences but they are not

worth mentioning, or in other words, this performance

comparison is not critical. The fact that optimal and

near-optimal bit loading algorithms do not present

important performance difference is also shown

in Reference [4]. Hence, algorithms performance

should be judged from the amount of complexity they

introduce.

5.2. Complexity Comparison

In Table I we summarize the complexity analysis of

our proposals and some of the existing algorithms

[3,5–9,14,16,17]. The following diagrams present the

complexity comparison of our systems and the exist-

ing algorithms for different data loads and constant

Rm, N.

Figure 5 presents the number of comparisons for a

system with N ¼ 256 subcarriers, maximum QAM

mode Rm ¼ 8 bits per subcarrier and different data

loads per DMT symbol. Hughes–Hartogs (H–H) algo-

rithm is orders of magnitude more complex. Proposal

1 and the algorithm given in Reference [6] have an

intersection point. That point can be easily calculated

using Table I. In fact the intersection point expresses

the data load where both algorithms have the same

number of comparisons. That critical load is:

RTC
¼ Nlog2N

log2ðNRmÞ � Rm þ 1
ð11Þ

The proposed algorithm 1 presents better performance

for loads smaller than RTC
whereas for loads greater

than RTC
Lai algorithm prevails. The data rate fluc-

tuated from 100 bits per DMT symbol up to 1900. For

our system, that could have a maximum load

NRm ¼ 2048 bits per symbol, this means that it was

shoved to its limit.

For Czylwik’s algorithm, we found that the real

number bit distribution was only ðRT � msÞ ¼ 50 bits

away from the final optimum bit distribution on

average whereas the power optimization resulted in

I ¼ 20 row searches among the subcarriers. For

Fischer’s et al. (F–H) algorithm, we found that

I1 ¼ 10 carriers had to be turned off on average and

I2 ¼ 20 bits was missing from the real number bit

Fig. 4. Normalized transmitting energy per bit for different
target data rates.

Fig. 5. Number of comparisons for different data loads per
DMT symbol.
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distribution until the target bit rate was fulfilled. These

values were found after running the simulations over

several frequency dependent channels.

From Figures 4 and 5, we can easily observe a

trade-off between optimization of the transmitting

energy and complexity. Piazzo sacrifices transmitting

energy for complexity reduction. All the others are

close to the optimum distribution and present higher

complexity. Proposal 2 is closer to Piazzo than any-

body else. So, if Piazzo introduced a low bound of

complexity, then Proposal 2 gets close to this bound-

ary without sacrificing optimality.

Except Krongold, F–H and proposal 2, all other

algorithms depend on data load fluctuations.

Figure 6 presents the number of divisions, multi-

plications, additions and subtractions versus target

data rate. Proposal 2 still remains the closest to

Piazzo’s complexity whereas simultaneously H–H

algorithm is not any more orders of magnitude away

from the others. Concerning Figure 6, we observe that

Baccarelli et al. present less number of calculations

than Piazzo. This is due to the iterative relation that

Reference [9] proposes for the calculation of the

incremental energies. However, as Reference [9]

also suggests this is only the case of an AWGN

channel. We should mention here that the number of

comparisons is of greater importance and in fact it is

the critical quantity for determining complexity as it

consumes much more CPU’s time. That is why in

many papers the complexity analysis lies only on the

first column of Table I. Arithmetic calculations that

were common to all of the examined algorithms like

counter additions were excluded from column 3 of

Table I.

6. Conclusions

In this paper, two new bit loading algorithms based on

the greedy approach are proposed. Both of them reach

the optimum integer bit distribution. The proposals

substantially accelerate the bit assignment by distri-

buting groups of bits to the sorted subcarriers (accord-

ing to the subchannels’ CNR). Basically, the well-

known bit loading algorithms are divided into two

categories: the optimal and the sub-optimal. Optim-

ality refers to the systems performance in terms of

transmitting power and achieved data rate. However, it

is proved that the sub-optimal algorithms performance

is close to the optimal in a way that optimality is not a

key feature to choose an appropriate algorithm. Thus,

computational complexity plays the main role. A

thorough complexity analysis in Section 5 gives an

overview of the computational load of many of the

well known algorithms existing in the literature.

Moreover, it reveals the significant improvement that

our proposals introduce and quantify that improve-

ment in Figures 5 and 6.

Appendix A: The Greedy Algorithm
[10 pp 393]

(a) To begin with F0 ¼Ø. Examine the elements

e1; . . . ; en of the matroid successively in order of

increasing weights.

(b) At stage k the kth element ek is being examined.

Let Fk�1 be the independent subset obtained at stage

k � 1.

If Fk�1 þ ek 2 �, set Fk ¼ Fk�1 þ ek. Else if

Fk�1 þ ek =2 �, put Fk ¼ Fk�1.

If k < RT set k ¼ k þ 1 and return to (b). Else if

k ¼ RT stop: F ¼ FRT is the basis of minimum weight.

We see that the greedy algorithm contains a test of

independence at each stage. Hence, it implies that we

have a method to check whether any subset of E does

or does not belong to the family � of independent

subsets. In the case of the matroid defined in Section

2, since all the sets having rank less or equal to RT are

included in the family �, then it is ensured that

Fk�1 þ ek 2 � when k < RT .

Appendix B: Validity Limits of Relation
(6)—Proof of Proposition 1

Assume that QAM modulation is chosen to load j bits

over a carrier i that presents CNR gi. The noise
Fig. 6. Number of arithmetic calculations of several algo-

rithms versus target data rate.
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disturbance is AWGN. It is shown in Reference [15]

that the probability of error in this case is given by

Pe ¼ kj � Q

ffiffiffiffiffiffiffiffiffiffiffiffi
3Pigi

2j � 1

r !
; where kj ¼ 4 1 � 1

2j=2

� �

ðA1Þ

In Reference [13], it is proved that for

j 2 ½2;1Þ; kj 2 ½2; 4Þ the lower (for kj ¼ 2) and upper

(for kj ¼ 4) bounds of Pe are tight. In Figure 7, we

present the simulations comparison of Equation (A1)

and its upper bound. The upper bound is rather close

to the actual curve for all of the QAM modes. In the

simulations, we were focused in the region from 10�3

to 10�9 error rates as it is the region of practical

interest. Additionally, we present the case j ¼ 1 which

is not included in Reference [13].

In many papers, the upper bound of Equation (A1)

for kj ¼ 4 is preferred to be used to describe the rate

function for QAM modulation due to its simplicity

(e.g. see Reference [3]). This is relation (6) rewritten

here as Equation (A2).

Pe ¼ 4Q

ffiffiffiffiffiffiffiffiffiffiffiffi
3Pigi

2j � 1

r !
ðA2Þ

Solving Equation (A2) for Pi we get

Pi ¼ Q�1 Pe

4

� �� �2
2j � 1

3gi

� �
ðA3Þ

The incremental energies then become

�Pi;j ¼ Pi;j � Pi;j�1 ¼ ½Q�1ðPe=4Þ�2

3gi
2j�1 ðA4Þ

From Equation (A4) can be easily extracted that

�Pi;jþ1=�Pi;j

� �
¼ 2 > 1 which is the proof of

Proposition 1.
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