
On the performance of the HSLS Routing Protocol for

Mobile Ad hoc Networks

G. Koltsidas, G. Dimitriadis and F.-N. Pavlidou
Department of Electrical and Computer Engineering, Telecommunications

Division, Aristotle University of Thessaloniki, Thessaloniki, Greece

Email: fractgkb@auth.gr

Abstract. The area of mobile ad hoc networks has recently attracted much sci-
enti�c interest, as a very appealing research area with many open issues and still
unsolved problems. One of the main issues that concerns researchers is the devel-
opment of routing algorithms that present good performance and face a hostile
environment. Many routing protocols have been proposed, attempting to minimize
routing overhead, or to reduce the energy consumed by nodes in order to maximize
their lifetime. A critical issue, though, is the development of routing protocols that
have the ability to maintain their good characteristics at an acceptable level as
the network population grows, an ability known as scalability. FSR, ZRP, HierLS
and FSLS protocol family are only a sample of scalable algorithms that have been
proposed so far. The HSLS protocol is a member of the FSLS family that is proved
to scale the best among the algorithms of the FSLS protocol family. In this paper
we propose a mechanism to enhance the already good characteristics of the HSLS
protocol aiming at the reduction of routing overhead of the original protocol. This
new scheme, which we called AFHSLS, exploits the so-called border nodes, in order
to deliver routing packets to their destinations. The new algorithm is proved through
simulations to signi�cantly reduce routing overhead, with minor or practically no
e�ect on other metrics, such as packet delivery ratio and delay of data packets.

Keywords: ad hoc, routing, scalability, FSLS, HSLS, AFHSLS.

1. Introduction and Related Work

Routing protocols are divided into two general categories: proactive and
on-demand. When a proactive algorithm is implemented, each node in
the ad hoc network maintains routing information about any other
node in the same network. Link state information about a node is
retained even if no data packet has to be sent to that node. If the
node, at a time instant, receives a packet that has to be forwarded to
another node, the path towards which destination is already known,
so the data packet su�ers very little delay. On the other hand, on-
demand routing protocols initiate a route request mechanism only when
there is a need, i.e. a data packet is received that has to be relayed
to an unknown destination. Hence, routing overhead of on-demand
algorithms depends mainly on traÆc, while for proactive algorithms
routing overhead depends mainly on the size of the network. This is

c
 2004 Kluwer Academic Publishers. Printed in the Netherlands.

wire[17].tex; 13/12/2004; 7:20; p.1

Manuscript



2 G. Koltsidas et al

the reason why on-demand protocols are assumed to be more scalable
than proactive ones.

A lot of routing protocols have been proposed for ad hoc networks
(proactive, on-demand or hybrid), that can scale well as network size
grows.

Fisheye State Routing (FSR), presented in [6], is a proactive algo-
rithm based on the idea that the further the source-destination pair
is located, the less accurate the routing information has to be. Under
FSR, a node sends updated link state information to its neighbours in
a periodic way, in order to avoid spreading the information through
the whole network and thus increasing routing overhead and reducing
network's performance. Moreover, link state information is updated
with di�erent frequencies according to the distance from the source
node. Hence, as a packet is forwarded, the route to the destination
becomes more and more accurate.

ZRP [3] is a combination of proactive and reactive techniques. Every
node maintains a zone area, inside which routing information is updated
through a proactive scheme. If a packet has to be sent to a destination
that does not lie inside the node's zone, the node reactively will initiate
a Route Request procedure in order for a path to that destination is
found. Mechanisms have also been proposed ([4], [5]) in order for a node
to dynamically change the radius of the zone, according to mobility and
traÆc.

HierLS is an algorithm that is based on clustering. Clusters are
established at multiple layers. In the beginning, nodes are organized
into clusters, thus forming the 1st layer of clusters. Then, those clusters
are considered as nodes in order to form the 2nd level of clusters, and
the procedure goes on until the highest layer of clustering is reached.
Link state packet transmissions are limited to the nodes of the cluster
level. HierLS relies on the Location Management service to inform a
source node about the address of the highest level cluster that contains
the desired destination and does not contain the source node. Location
Management service can be implemented in a proactive, reactive or
hybrid way.

The rest of the paper is structured as follows. In Section 2 the FSLS
family of protocols is described and particularly the HSLS algorithm,
on which our work concentrates. The proposed mechanism for routing
overhead reduction is described in Section 3. Simulation parameters and
results are presented and analyzed in the following Section. Section 5
concludes the paper.

wire[17].tex; 13/12/2004; 7:20; p.2



On the performance of the HSLS Routing Protocol for Mobile Ad hoc Networks 3

2. FSLS Protocol Description

2.1. FSLS Protocol Family

The HSLS (Hazy Sighted Link State) protocol is a member of the FSLS
(Fuzzy Sighted Link State) protocol family. Therefore, we will �rst
describe the philosophy and the performance of FSLS protocols.

The fundamental routing packet of the FSLS protocols is the Link
State Update (LSU). This packet contains the link state of the node
that generated it, i.e. the list of neighbouring nodes and the status of
the link with each neighbour. Every routing packet, thus every LSU,
has a Time To Live (TTL) �eld. The value of the TTL �eld is initialized
by the node that generates the packet (the source node) and each time
the packet is received by a node, the TTL value is reduced by one.
Hence, LSU's TTL value in fact represents the number of times that
the packet can be relayed, in other words, how deep into the network
the packet will travel, with regard to the source node. If the TTL value
is equal to or greater than the diameter of the network, the packet will
practically reach all the nodes in that network. In other words, when
a node wishes a speci�c packet to be received by all nodes, it simply
sets the packet's TTL �eld to a value greater than the diameter of the
network, usually a value considered as in�nite. Such a packet is called
a global LSU, thus an LSU that will reach every node into the network.

FSLS protocols are predicated upon the idea that the greater the
distance between two nodes, the less accurate the route between them
needs to be. The philosophy is very similar to that of the FSR protocol.
The accuracy of the path to a destination node that lies far from the
node under consideration is unlikely to have a serious e�ect on the next
hop decision the node will make in order to forward a packet to the
destination node. Therefore, nodes that are far away from the source
node can be informed less frequently about link state changes than the
nodes closer to it. The innovation that the FSLS algorithms introduce
is the mechanism of LSU transmissions.

Under FSLS, every node in the network maintains an integer Counter,
which is initialized when the node is powered on or after a global LSU.
The Counter is increased by 1 every T = te seconds, where T is the
period of the protocol and is the same for all nodes in the network. Each
time the Counter is increased, the protocol seeks for the greatest power
of 2 that divides the Counter, i.e. division leaves no residual. So, the
Counter's value can be expressed as Counter = N �2i�1, where N is the
quotient of the aforementioned division and p = i � 1 is the exponent
that the algorithm searches for. Afterwards, the algorithm has to decide
upon two other issues: whether an LSU should be transmitted and what

wire[17].tex; 13/12/2004; 7:20; p.3



4 G. Koltsidas et al

its TTL value should be. In order to decide whether the node should
transmit an LSU, the protocol looks into the recent past of the node.
More speci�cally, the node will transmit an LSU if there has been a link
status change in the node's neighbourhood in the past 2i�1te seconds,
or, equivalently, in the past 2i�1 periods of the protocol. If an LSU is
transmitted, the algorithm sets its TTL value to si. The progression of
si is monotonically increasing, that is si � sj for i � j. Summarizing,
each node "wakes up" every te seconds, increases its Counter by 1
and transmits an LSU with TTL equal to si if there has been a link
status change in the past 2i�1te seconds, or during the last 2

i�1 periods.
However, this procedure does not go on for ever. When the TTL value
exceeds the maximum distance into the network that the node running
the algorithm is aware of, the TTL is set to in�nity and a global LSU
is transmitted, if there is a need to do so. After a global LSU, the node
reinitializes the Counter and all clocks, and the procedure starts from
the beginning. The above mechanism guarantees that nodes which are
si hops away from the node under consideration will receive an updated
LSU after 2i�1te seconds at most, so they will be informed about a link
status change after 2i�1 periods of the protocol at most.

Let us explain the protocol's behaviour using the following example.
For the sake of simplicity, we will assume a high mobility scenario, so
that a link status change takes place during every time interval te,
and we will focus on a particular node. Initially, Counter is set to
zero and so is the clock. After te seconds (t = te), the node "wakes
up" and increases the Counter by one, so Counter = 1. The greatest
exponent p that divides Counter is 0, so i = 1 and Counter = 1 � 20.
Therefore, assuming that a link status change always takes place, an
LSU will be transmitted with TTL = s2. At time t = 2te, the node
"wakes up" and increases the Counter again, so Counter = 2. This
time the exponent p = 1, so i = 2 and an LSU is transmitted with
TTL = s2. An interesting phenomenon takes place at the time instant
t = 3te. After the Counter is increased (Counter = 3), the algorithm
calculates the exponent p = 0. Hence, i = 1 and an LSU is transmitted
with TTL = s1. We mention here that the previous LSU's TTL was
s2 � s1. Finally, at t = 4te, Counter = 4, p = 2, i = 3 and an LSU is
transmitted with TTL = s3. The procedure is presented more clearly
in Figure 1a, where the horizontal axis presents time (in multiples of
te) and the vertical axis represents the TTL values of the transmitted
LSU's (si values presented are indicative). In the previous example, we
have assumed that s5 =1, i.e. a global LSU is transmitted at t = 16te
and the scheme is repeated in time.

In order to cover the low mobility scenario cases as well, a soft state
protection has been adopted, thus a global LSU is transmitted every tb

wire[17].tex; 13/12/2004; 7:20; p.4



On the performance of the HSLS Routing Protocol for Mobile Ad hoc Networks 5

Figure 1. LSU's TTL values and transmission instants under a high mobility
scenario (FSLS and HSLS protocols).

seconds when no LSU has been transmitted during this time period. At
the extreme case of completely stationary nodes, every node transmits
a global LSU every tb seconds. The value of tb is usually selected to be
much greater than te.

2.2. The HSLS Protocol

In this section we will describe the HSLS protocol. Santivanez and
Ramanathan in [1] provided approximate expressions of the proactive,
suboptimal and total overhead of the FSLS protocols. According to that
work, the proactive overhead of a protocol is de�ned as the amount
of bandwidth consumed by the protocol in order to propagate route
information before this information is needed. In addition, the sub-
optimal overhead is de�ned as the di�erence between the bandwidth
consumed by all sources when transmitting data using the routes that
the protocol provides and the bandwidth that would be consumed if
the optimal routes were used to propagate the data. For any proactive
protocol, such as FSLS protocols, the total overhead is the sum of the
proactive and the sub-optimal overhead. In their e�ort to minimize
the total overhead of the FSLS protocols with respect to the si values,
Santivanez and Ramanathan were led to the HSLS (Hazy Sighted Link
State) protocol, which is an integer solution of the previous mentioned
minimization problem. Thus, HSLS is the algorithm with the minimum
total overhead among all the FSLS protocols. Under HSLS, the si values
follow a geometric progression:

s1 = 21 = 2
s2 = 22 = 4

wire[17].tex; 13/12/2004; 7:20; p.5



6 G. Koltsidas et al

s3 = 23 = 8
s4 = 24 = 16
s5 = 25 = 32

Therefore, the description of the HSLS protocol could be summa-
rized in the following: Every 2i�1te seconds (i=1,2,3,4,...) the node
"wakes up" and transmits an LSU with TTL = 2i if a link status
change has been detected in the past 2i�1te seconds.

Figure 1b presents the previous example that we used when we
explained the FSLS, for the case of the HSLS protocol. The di�erence
lies in the TTL values on the vertical axis.

3. AFHSLS Protocol Description

In the previous section we described the HSLS protocol. Before we
describe our proposal, a few de�nitions should be given. We call source
node the reference node or the node under consideration, when we
examine a protocol's behaviour. We will call k-hop border nodes of a
source node the set of nodes that are exactly k hops away from it. We
can easily come to the conclusion that 1-hop border nodes are in fact
the source node's neighbours. As an example, let us consider the simple
network presented in Figure 2. Assuming that the source node is node
A, 1-hop border nodes are nodes B, C, D and E, 2-hop border nodes
are nodes F, G, H, I, J, K, L, M and N and node P is the only 3-hop
border node. The description of the proposed mechanism follows.

If we examine the HSLS protocol carefully we will notice that in
a number of cases a particular node receives identical LSUs multiple
times, even though this is not necessary. This happens, for instance,
when the source node transmits an LSU with TTL = 2i at time t1 =
m � te seconds (m: integer) after a global LSU and for the next t0 =
i � te seconds no link status change takes place, so the source node, at
time t2 = t1 + t0 = (m + i) � te, transmits an LSU with TTL = 2j =
2i+1, which contains exactly the same information with the previous
one. However, the �rst LSU will reach 2i � hop border nodes and the
second one 2i+1 � hop border nodes. Thus, nodes that are less than
2i hops away will receive two identical LSU's, which indicates useless
bandwidth consumption. Alternatively, the 2i�hop border nodes could
broadcast the last received LSU instead of the source node, if they
were assured that the source node would not transmit any new LSU.
Summarizing, the new mechanism could be stated as follows:

Every 2i�1te seconds (i=1,2,3,4...) the node "wakes up" and trans-
mits an LSU with TTL = 2i, if there has been a link status change in the

wire[17].tex; 13/12/2004; 7:20; p.6



On the performance of the HSLS Routing Protocol for Mobile Ad hoc Networks 7

Figure 2. k-hop border nodes.

last te seconds. In any other case, the 2i
0

� hop border nodes broadcast
the last received LSU, transmitted by the particular node, with TTL
value equal to 2i � 2i

0

. i0 is the value of i when the last received LSU
was transmitted by the source node.

This new version of the HSLS protocol was named AFHSLS (Active
Frontier Hazy Sighted Link State). Let us describe the performance of
the AFHSLS algorithm by using an example. We assume an ad hoc
network that utilises HSLS as the routing protocol. We also assume
that a global LSU has just been transmitted by the source node, so
timer is set to zero, and that link status changes take place during the
1st, 5th, 7th and 10th time interval te for a 16te period of seconds (low
mobility scenario).

At t = te, an LSU is transmitted with TTL = 2, because in the
previous te seconds a link status change has been detected. Then, the
node wakes up at t = 2te and transmits an LSU with TTL = 4
because in the previous 2te seconds a link status change took place
(the same as before). The node also "wakes up" at t = 3te, but no
LSU is transmitted, as in the previous te seconds there has been no
link status change in the node's neighbourhood. At time t = 4te, the
node transmits an LSU with TTL = 8, because in the previous 4te
seconds a link status change took place. Similarly, the node wakes up
at t = 5te; 6te; 7te; 8te; 10te and 12te seconds in order to transmit an
LSU with TTL = 2; 3; 2; 8; 4; 8 and 16 respectively. Figure 3a shows

wire[17].tex; 13/12/2004; 7:20; p.7



8 G. Koltsidas et al

this procedure. The horizontal axis represents time in multiples of te.
The TTL values of the transmitted LSUs, or, equivalently, the k-hop
border nodes that the LSUs will reach, are placed on the vertical axis.
This �gure will help us compare HSLS with AFHSLS and understand
the di�erences between them and the degree of eÆciency in bandwidth
utilization we can achieve by adopting AFHSLS.

According to the aforementioned description of AFHSLS, in the
previous example the same node would behave as follows: The node
"wakes up" at t = te and transmits an LSU with TTL = 2, as it would
act under HSLS. However, at t = 2te the source node will not transmit
any LSU, because in the past te seconds no link status change has
been detected (the previous link status change took place in the �rst
time interval). On behalf of the source node, all 2-hop border nodes
will transmit the last LSU received by the source node with TTL value
equal to 2, in order to 4-hop border nodes of the source node will receive
the LSU. We should mention here that the information which 4-hop
border nodes receive is the same irrespective of the routing protocol
we use (HSLS or AFHSLS). However, in the case of AFHSLS, nodes
that are 2 or less hops away from the source node will not receive 2
LSUs containing exactly the same information, thus bandwidth is used
more eÆciently. At t = 3te, the source node will not transmit an LSU,
because no link status change has been detected in the previous te
seconds. At time 4te, the source node transmits no LSU again, because
no link status change has been detected in the past te seconds. How-
ever, all 4-hop border nodes will transmit the last received LSU by the
source node (actually the last received LSU that a 2-hop border node
initialized on behalf of the source node) with TTL = 4, so that all
nodes that are located 8 or less hops away from the source node will be
informed. In this case, all transmissions by the nodes that are 4 or less
hops far from the source node are avoided. The entire procedure from
t = 0 to t = 16te for the case of AFHSLS is presented in Figure 3b. The
arrows now are drawn from the k-hop border nodes that initiate the
LSU transmissions on behalf of the source node. Comparing Figures 3a
and 3b we can easily notice the signi�cant eÆciency that the AFHSLS
provides relative to the original HSLS protocol.

In order for the k-hop border nodes to be able to transmit LSUs
on behalf of the source node, they should save in a memory all LSUs
which were received and not immediately retransmitted (which means
that the node was a border node for the source node of the speci�c
LSU). However, this is not compulsory. As the received LSU induces
changes on the routing table of the node, the node could reconstruct it,
looking into its own routing table, if that LSU should be retransmitted.

wire[17].tex; 13/12/2004; 7:20; p.8



On the performance of the HSLS Routing Protocol for Mobile Ad hoc Networks 9

Figure 3. LSU transmissions and TTL values for a low mobility example when the
routing protocol is a) HSLS and b) AFHSLS.

So, AFHSLS does not imply that additional memory should be used in
order for the nodes to save the received LSU's.

We mentioned earlier that, when the source node detects no link
status change for a period of time, 2i�hop border nodes (i = 1; 2; 3; 4)
will transmit the LSUs, but they should be assured that the source
node will not transmit any new LSU. It would not be wise for the source
node to send a small packet to the appropriate border nodes to inform
them that it will not transmit, because this would lessen AFHSLS's
eÆciency. However, border nodes can be assured just by delaying the
transmissions of the new LSUs for a time interval approximately equal
to the time that an LSU would need to travel from the source node to
the border nodes. This mechanism will bring about a slight delay in the
delivery of the LSUs, but we expect that this delay will barely in
uence
data packet delivery, because the philosophy of HSLS (and AFHSLS) is
that nodes that are far from each other do not need to know each other's
exact location, but only the direction in which they should forward the
message, in order to make a correct next hop decision. We discuss that
issue in the next section where we refer to the simulation results.

Node mobility, however, has an impact on our scheme that could not
be overlooked. Under AFHSLS, k-hop border nodes are responsible
for the delivery of LSU, in case the source node experiences no link
status changes for some time. However, k-hop border nodes are moving.
This means that, when they should transmit the last received LSU on
behalf of the source node, they may not be located k-hops away from
the source node. They may either get closer to the source node, or
move away from it. In the �rst case, the LSU transmission from these
nodes do not cause any problems. In the other case, though, the nodes
are moving in the direction of the LSU propagation. So, these nodes

wire[17].tex; 13/12/2004; 7:20; p.9



10 G. Koltsidas et al

may mistakenly assume that the source node did not transmit any
LSU, because the time interval they wait for an LSU transmission by
the source node is not enough in order for the LSU from the source
node can reach them before they transmit the last received LSU. This
may result in the transmission of both LSU (the previous one and the
new LSU transmitted by the source node), thus consuming bandwidth
unnecessarily. This phenomenon takes place usually far away from the
source node, because LSU receiving times cannot be exactly calculated
since they have relatively high jitter with respect to the receiving time
from nodes near the source node. However, we can use an upper bound
in the time the k-hop border nodes will wait before retransmitting
the last received LSU, and based on the fact that LSU transmissions
with high TTL are not so often and nodes movement makes these
phenomena short-living, they do not have a great impact on AFHSLS's
performance.

Due to the nodes' mobility, AFHSLS cannot guarantee the reception
of an LSU from all the nodes that should receive that LSU. Let us
provide an example. Consider a source node transmitting an LSU with
TTL value equal to 4. This LSU will reach all 4-hop border nodes. Now
consider a speci�c node which is located 5-hops away from the source
node when 4-hop border nodes receive the LSU. Also assume that this
node moves towards the source node relatively fast. If no link status
change is detected by the source node for some time, 4-hop border
nodes will transmit the previously received LSU up to 8-hop border
nodes. If the fast moving node at that time is 2 hops away from any
4-hop border node, it will not receive the LSU. This phenomenon is
common to nodes moving fast in the opposite direction of the LSU
propagation direction. AFHSLS cannot guarantee LSU receptions in
situations similar to the above one. This is another drawback of the
proposed mechanism, however, node mobility and LSU retransmissions
make these phenomena last for short time. These cases are the reason
why AFHSLS seams to achieve smaller packet delivery ratios than
HSLS, as described in the next section.

By the description of AFHSLS it is obvious that it performs identical
to HSLS under very high mobility, because link status changes take
place during every time interval te. Notwithstanding, AFHSLS outper-
forms HSLS under middle and low mobility scenarios. The authors in
[1] also proposed a mechanism for routing overhead reduction under
low mobility scenarios. They named the new protocol Adaptive-HSLS
(A-HSLS). A-HSLS switches between HSLS and SLS mode according
to the experienced link status change ratio. More speci�cally, after a
global LSU, the node is in the Undecided mode. If tth seconds elapse
and no link status change takes place, the node switches to SLS mode,

wire[17].tex; 13/12/2004; 7:20; p.10



On the performance of the HSLS Routing Protocol for Mobile Ad hoc Networks 11

assuming that link status changes rarely happen. When a link status
change takes place, the node will transmit a global LSU and will switch
back to the Undecided mode. If a link status change takes place before
tth seconds elapse, the node switches to HSLS mode and the normal
procedure goes on, as the node assumes high mobility conditions. We
remind here that under SLS, a node transmits a global LSU whenever
a link status change takes place. The previously mentioned threshold
tth was calculated by authors to be t = Rxte

2 , where Rxte is the instant
when a global LSU is to be transmitted. Below this threshold, HSLS's
overhead exceeds SLS's overhead, so it would be better if the node
followed the SLS algorithm. In our paper, though, we considered the
original HSLS protocol, because in our simulated scenarios A-HSLS
showed very small di�erences relative to HSLS. One could expect that,
under very low mobility scenarios, A-HSLS and AFHSLS show similar
behaviour, regarding routing overhead.

4. Performance Evaluation

In order to evaluate the proposed mechanism we conducted a number
of simulations using the NS-2 simulation tool. Simulation parameters
are summarized in Table I. Two types of networks were simulated: a
"small" network comprising 50 nodes moving inside a 1200x400m2 area
and a "large" network of 100 nodes moving inside a 1500x640m2 area.
The areas' dimensions were selected so that the same area corresponds
to every node in both scenarios (9600m2 per node).

For the purpose of neighbour discovery, we used the method of
"Hello" packets. Each node broadcasts a small "Hello" packet every
0.5 sec, so that all neighbouring nodes become aware of its existence. If
no "Hello" packet is received by a neighbouring node for 3 continuous
times, this node is no longer considered as a neighbour. In order to take
an average view of the performance of the AFHSLS algorithm, we ran
6 di�erent scenarios for every pause time and then averaged the values
of the performance metrics. We computed the most common metrics
used when evaluating the performance of routing protocols in ad hoc
networks:

� Packet Delivery Ratio (PDR). It is de�ned as the percentage
of the data packets produced by the sources, that were �nally
delivered correctly to their destinations.

wire[17].tex; 13/12/2004; 7:20; p.11



12 G. Koltsidas et al

Table I. Simulation Parameters.

Area 1200x400 / 1500x640 m2

Number of Nodes 50 / 100

Simulation Duration 900 seconds

Mobility Scenario Random Waypoint Model (RWP)

Pause Times 0, 5, 10, 20, 40, 80, 150, 300, 600, 900 sec

Speeds Uniform in [0m/s, 20m/s]

Radius 180 m

MAC Speed 2 Mbps

RTC/CTS Mechanism ON

te 6 seconds

tb 48 seconds

Number of sources 19 / 31

Number of Data Flows 25 / 50

TraÆc Type Constant Bit Rate (CBR)

Data packet Length 512 bytes

TraÆc initialization time 100 seconds after simulation started

� Average Packet Delay. It is de�ned as the average time the
delivered data packets needed to travel from the source node to
the destination node.

� Average Number of Hops. This metric refers to the average
number of hops that the delivered data packets needed to reach
the destination node.

� Routing Overhead. It is de�ned as the total number of routing
packets transmitted by all the nodes during the simulation.

Usually "Hello" packets are ignored because they cannot be avoided
by any routing protocol, as they are a fundamental mechanism for
neighbour discovery. Therefore, we did not include "Hello" packets in
the last metric.

Figure 4a presents the Routing Overhead for both HSLS and AFH-
SLS algorithms versus pause time and for both the "small" and "large"
network case. First of all, we can observe that routing overhead is
a monotonically decreasing function of pause time. This is expected,
because as pause time increases, the node's mobility is reduced, so
link status changes are less frequent. This leads both algorithms to
transmit less LSUs. The interesting fact is that there is a clear di�erence

wire[17].tex; 13/12/2004; 7:20; p.12



On the performance of the HSLS Routing Protocol for Mobile Ad hoc Networks 13

in routing packet transmissions between HSLS and AFHSLS. For the
"small" network, there is a di�erence up to 60,000 routing packets and
for the "large" network the di�erence reaches 160,000 packets. In order
to obtain a more spherical view of the AFHSLS's performance, though,
we should take into consideration the total packets transmitted, so we
calculated the relative overhead reduction that AFHSLS introduces
with respect to HSLS. The results are presented in Figure 4b. We
notice that, as pause time increases, overhead reduction also increases,
which means that AFHSLS sends less routing messages than HSLS,
so it performs better in medium and low mobility scenarios. This is
also expected, as under very high mobility scenarios the two protocols
perform almost identically. A peak of approximately 42% is reached for
the "small" network, while for the "large" network case a 37% reduction
in routing packet transmissions is achieved. However, even under high
mobility scenarios (pause time = 0 or 5 seconds) AFHSLS consumes
about 20% and 16% less bandwidth than the original HSLS for the case
of "small" and "large" network respectively. For pause time greater
than 300 sec, overhead reduction decreases. This is due to the fact that
nodes rarely move, so soft state updates are transmitted and little use
of the proposed mechanism is made. Finally, when pause time is 900
seconds, nodes are stationary for the entire duration of the simulation.
In this case, routing packet transmissions bene�t from the proposed
mechanism only during the transitional state at the beginning of the
simulation, as a steady state is rapidly reached and only soft updates
are then broadcasted. Additionally, the total number of routing packets
transmitted is small and proportional to the number of nodes. So, the
percentage of the packets the AFHSLS protocol saves is lower for the
"small" network than for the "large" network case.

In order to evaluate the performance of the proposed scheme, we
should also examine it's impact on the other metrics: Packet Delivery
Ratio, Average Number of Hops and Average Packet Delay. Figure 5a
presents Packet Delivery Ratio as a function of pause time. At �rst
glance, there is practically no di�erence between the two protocols.
An observable di�erence can be noticed for pause times 80, 150 and
300 seconds, but this di�erence never exceeds 5%. However, for the
previously mentioned pause times, according to Figure 4b, AFHSLS
achieves a reduction greater than 30% in routing overhead. In the
case of high mobility of the nodes, PDR of both protocols is almost
identical. Since AFHSLS reduces routing overhead, one would expect
that AFHSLS would achieve higher packet delivery ratios than HSLS.
However, simulation results show that PDR is reduced. This is due
to phenomena described in the previous section: There are cases under
AFHSLS when both the previous one and the new LSU are transmitted

wire[17].tex; 13/12/2004; 7:20; p.13



14 G. Koltsidas et al

Figure 4. (a) Routing Packets and (b) Overhead Reduction.

Figure 5. Packet Delivery Ratio.

and when particular nodes do not receive an LSU due to their mobility,
however HSLS would ensure the LSU delivery to that nodes. This is
why we also simulated 2 scenarios with 200 nodes in a 2400x800m2

region, pause times equal to 0 and 80 seconds and the same traÆc
pattern used in the case of the "large" network. Figure 5b shows the
Packet Delivery Ratio versus the Number of Nodes in the network for
pause times equal to 0 and 80 seconds. One can clearly �gure out that
when network size increases beyond 200 nodes, AFHSLS bene�ts from
the reduced routing overhead and attains a greater packet delivery ratio
than HSLS.

As described in the previous section, AFHSLS delivers exactly the
same LSUs as HSLS with a small time delay. This means that, gener-

wire[17].tex; 13/12/2004; 7:20; p.14



On the performance of the HSLS Routing Protocol for Mobile Ad hoc Networks 15

Figure 6. a) Average Number of Hops and b) Average packet delay.

ally speaking, nodes should maintain almost the same routing tables
regardless of the protocol adopted. So, focusing on the Average Number
of Hops metric, no di�erence should be observed between the original
HSLS protocol and the AFHSLS protocol. In Figure 6a the Aver-
age Number of Hops is presented versus pause time. Obviously, our
expectations agree with the simulation results.

Finally, Figure 6b shows the Average Packet Delay of data packets
over pause time. At �rst glance, we notice that delay decreases as pause
time increases, as we expected. Low mobility translates into less band-
width consumption, so the common medium is free for the data packets
transmissions, thus reaching their destinations faster than they would
do if nodes were constantly moving and routing messages should also
be transmitted consuming bandwidth and delaying data packets. The
most surprising in that �gure is that the two curves do not follow a clear
order. Generally, AFHSLS tends to deliver data packets in practically
the same time or faster than HSLS. As described before, when AFHSLS
is adopted as the routing protocol, k-hop border nodes have to wait
for some time in order to be assured that the source node did not
transmit any LSU. Such a delay may result in a delay in informing
other nodes about shorter paths or broken links, so we could expect
that AFHSLS should present a higher Average Delay. On the other
hand, though, since AFHSLS reduces the number of routing packets
transmitted, faster packet forwarding could be expected by the nodes.
Simulations show that generally packets are delivered faster by the
AFHSLS that by the HSLS protocol.

Simulations also con�rm that HSLS is a scalable algorithm and
results show that AFHSLS scales better than HSLS.

wire[17].tex; 13/12/2004; 7:20; p.15



16 G. Koltsidas et al

5. Conclusions

In this paper we presented AFHSLS, a modi�ed version of the HSLS
protocol that consumes less bandwidth than HSLS while achieving
practically the same throughput and data packet delay as HSLS. This
is accomplished by simply enforcing k-hop border nodes to transmit
previously received LSU's on behalf of the source node itself. Simulation
results show that the proposed algorithm, needs from 16% (for high
mobility scenarios) up to 35% (at medium and low mobility scenarios)
less bandwidth resources for routing purposes, while practically it does
not a�ect data packet delivery, thus improving HSLS's scalability. It
would be of great interest to evaluate AFHSLS performance in larger
networks and under mobility pro�les other than Random Waypoint
Model.

References

1. C. Santivanez, R. Ramanathan, 'Hazy sighted Link State (HSLS) Routing:
A scalable Link State Algorithm,' BBN technical memo BBN-TM-1301, BBN
Technologies, Cambridge, MA, August 2001 (Rev. March 2003).

2. C. Santivanez, R. Ramanathan, I. Stavrakakis, 'Making Link State routing
Scale for Ad Hoc Networks,' in Proc. MobiHOC '01, Long Beach, CA, October
2001.

3. Z.J. Haas and M.R. Pearlman, Prince Samar, 'The Zone Routing Protocol
(ZRP) for Ad Hoc Networks,' Internet Draft, draft-ietf-manet-zone-zrp-04.txt,
July 2002.

4. M. Pearlman and Z. Haas, 'Determining the Optimal Con�guration for the
Zone Routing Protocol,' IEEE Journal on Selected Areas in Communications,
vol 17, no. 8, pp. 1395-1414, August 1999.

5. T. Thongpook and T. Thumthawatworn, 'Adaptive Zone Routing Technique
for Wireless Ad hoc Network', in Proc. ITC-CSCC 2002, Phuket, Thailand, ,
July 16-19, pp. 1839-1842.

6. G. Pei, M. Gerla, Tsu-Wei Chen, 'Fisheye State Routing in Mobile Ad Hoc
Networks,' IEEE ICC 2000, New Orleans, USA, 2000, vol 1, pp. 70-74.

7. X. Hong, K. Xu, M. Gerla, 'Scalable Routing Protocols for mobile ad hoc
networks,' IEEE Network magazine, vol 16, no. 4, pp. 11-21, July-August 2002.

8. C. Perkins, 'Ad Hoc Networking, Addison Wesley, 2001.
9. Network Simulator 2 (ver. 2.27), www.isi.edu/nsnam/ns.

wire[17].tex; 13/12/2004; 7:20; p.16


	Text1: 
	Text2: 
	Text3: 
	Text4: 
	Text5: 
	Text6: 
	Text7: 
	Text8: 
	Text9: 
	Text10: 
	Text11: 
	Text12: 
	Text13: 
	Text14: 
	Text15: 
	Text16: 
	Text17: 


