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Abstract—In this paper, we derive an analytical framework
for the performance evaluation of a recently proposedM-ary
orthogonal scheme based on differential encoding/decoding of
the Walsh/Hadamard chips prior/after spreading. This technique
makes feasible nonpilot-assisted detection over fast fading envi-
ronments such as the land mobile satellite (LMS) channel. Our
results show that differential M-ary orthogonal signaling presents
very good performance at Doppler frequency shifts much higher
than the symbol rate. Amplitude statistics are considered to be
Rayleigh, but may be easily extended to more general models
based on the analytical derivation presented.

Index Terms—Doppler shift, DS/CDMA, fast fading, M-ary
orthogonal modulation.

I. INTRODUCTION

T HE expanding demand for highly spectral efficient mod-
ulation techniques has well-establishedM-ary orthogonal

signaling, by means of Walsh/Hadamard (W/H) sequences,
for DS/CDMA applications.M-ary orthogonal DS/CDMA
systems have already been applied or considered as strong
candidates for terrestrial or future land mobile satellite (LMS)
communications [1]–[5]. Although well suited for terrestrial
applications, their effectiveness for LMS satellite systems
is still under consideration, especially when nonpilot-aided
demodulation is to be applied. This is mainly due to the
special character of the LMS channel which originates crucial
problems on the application ofM-ary orthogonal signaling.
One of the major problems is the tremendous performance
degradation thatM-ary orthogonal systems face under high
Doppler frequency shifts [6], which are inherent in the LMS
channel and may take values higher than the symbol rate
[7]. This degradation results from loss of orthogonality of the
transmitted waveforms, and makes conventional noncoherent
detection impossible without any special device that removes
Doppler shift. Such a device, together with a method of trans-
mitting a combination of Hadamard sequences, was proposed
in [7]. Instead of using a special device, and in order to keep
complexity as low as possible, we have recently proposed
two techniques based on chip-by-chip differential encoding
before transmission [8]. This idea, based on [9], where chip-
by-chip differential encoding of the spreading sequence was
proposed for a BPSK DS/CDMA system, has driven us in
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a novel modulation/demodulation technique with differential
encoding/decoding of W/H chips prior/after spreading, the so-
called DM-ary orthogonal signaling. Preliminary simulation
results presented in [8] under an LMS channel showed that
the proposed scheme is capable of combating high Doppler
shifts while preserving all the advantages ofM-ary orthogonal
modulation. In this paper, we concentrate on the analytical
performance evaluation of a DM-ary orthogonal DS/CDMA
system in order to find the range of applicability and the
performance dynamics of the proposed scheme under a high
Doppler shift environment. The analytical evaluation is applied
at a Rayleigh fast fading environment, but generalization to
more complex fading cases is straightforward as soon as
the first- and second-order statistics of the fading process
are known. The calculated results, in terms of the bit-error
probability (BEP), are compared with the conventional en-
velope detectedM-ary orthogonal scheme. Multiple-access
interference is modeled as an extra additive Gaussian noise
source [9]–[10], and nonperfect power control effects are not
taken into account in order to focus on the signaling scheme.

The paper is organized as follows. In Section II, we describe
the system model under consideration, including the trans-
mitter, channel, and receiver models for both the differential
and conventionalM-ary orthogonal DS/CDMA systems. In
Section III, we derive the BEP of the proposed scheme by
first computing the pairwise error probability between two
different Hadamard symbol/sequences. Computation of the
conventional system’s BEP is also included. In Section IV,
we present comparative numerical results for both the dif-
ferential and conventional systems under a Rayleigh fading
environment, and we conclude our paper with Section V.

II. SYSTEM MODEL

The transmitter of the conventionalM-ary orthogonal sys-
tem is shown in Fig. 1(a) while Fig. 1(b) presents the proposed
DM-ary orthogonal DS/CDMA scheme (see also [8]). In both
cases, source information bits of rate are grouped and
mapped to one of Hadamard symbols/sequences
of rate . When no differential encoding is
applied, the Hadamard chips
of period , with the symbol period, are
oversampled by a factor , which is assumed to be an
integer, and then multiplied with a bipolar -length random
spreading sequence. The resulted samples BPSK modulate
a -energy chip waveform . The equivalent low-pass
transmitted signal for the th user in order to transmit the
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(a)

(b)

Fig. 1. Block diagrams of (a) DM-ary and (b)M-ary transmitters.

th Hadamard symbol is

(1)

where

(2)

and is the th chip’s amplitude of the
characteristic for the th user spreading sequence. is the
signal power.

When DM-ary orthogonal signaling is employed, the
Hadamard chips are differentially encoded and then over-
sampled and spread, that is,

(3)

where are the oversampled differentially encoded
Hadamard chips generated by

(4)

The received low-pass signal takes the form

(5)

where is a complex Gaussian random process representing
the multiplicative fading process, is the additive white
Gaussian noise, and is a random process representing
multiple-access interference that results from interfering users.
Assuming a perfect power control procedure and a large
number of users, may be approximated by a zero-mean

Gaussian random process [9], [10]. Thus, we may introduce an
equivalent white Gaussian noise process for
the combined effects of noise and multiple-access interference
[9] with variance , where and are power
spectral densities of and , respectively.

The receiver consists of a matched to the chip waveform
filter with impulse response , followed by a sampling
(at the spreading chip rate) device. Perfect clock recovery
and proper sampling instants are assumed so that interchip
interference between the samples is eliminated (see also [9]).
The complex-valued sequence that arises is multiplied with
the locally generated spreading sequence, and enters an accu-
mulator over the spreading chips that are inherent in every
Hadamard chip. The resulting samples during the interval of
one Hadamard symbol take the form

(6)

in case of the DM-ary orthogonal signaling and

(7)

in the case of conventionalM-ary orthogonal signaling. As-
suming Rayleigh fading, the samplesof the multiplicative
Gaussian fading process are complex, jointly Gaussian random
variables. Their first and second moments are given by

(8a)

(8b)

(8c)

(8d)

where denotes the maximum Doppler shift. Introducing
the normalized Doppler shift , so that , the
covariance may be written as .
It should be noted that the above expressions are exact
in the case of , that is, when one spreading chip
is encountered for each Hadamard chip. When ,
the samples of the channel in (6) and (7) arise after
summation over consecutive samples takes part. We assume
that with proper normalization, the channel statistics are kept
unaltered. Simulation results, to be presented, showed that the
relationship between the length of the spreading sequence and

, that is, the number of spreading chipsper Hadamard
chip, does not affect the performance under a constant level
of multiple-access interference and noise as soon as the
Doppler shift remains well below the Hadamard chip rate.
Obviously, though, for longer spreading sequences leading to
greater , more users are needed to reach the same interference
level. The noise samples have variance .

The analysis to be presented may be generalized to en-
counter more complex channel amplitude statistics, such as
Rice (e.g., [11]), or combinations of Rice, Rayleigh, or log-
normal statistics when the first and second statistical moments,
as given by (8), are known.

The conventional receiver proceeds by passing the samples
of (7) through a bank of envelope correlators, one for
each of the Hadamard symbols/sequences [Fig. 2(a)]. The
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(a)

(b)

Fig. 2. Block diagrams of (a) DM-ary and (b)M-ary receivers.

decision variables that arise are

(9)

The DM-ary receiver proceeds with differential decoding of the
samples of (6), and then passes the decoded samples through
the bank of correlators as shown in Fig. 2(b). The decision
variables take the form

(10)

In both cases, the symbol corresponding to the maximum
decision variable is selected as the one transmitted. A symbol
error occurs when , where

was the transmitted symbol.

III. ERROR PROBABILITY ANALYSIS

A. DM-ary Orthogonal Signaling

Let denote the
pairwise error probability (PEP) when symbol is selected
as correct over the transmitted symbol.

(11)

where . Substituting the ’s from (6),
we get

(12)

The sequence takes zero values and
values. The nonzero values are at these places where
the elements of the two Hadamard sequences differ. Thus,
different nonzero places, according to the specific symbols
and that are considered, arise. But, because of the structure
of the Hadamard sequences, the same sequences (with
different order) arise, no matter which symbolis taken as the
reference symbol. Let denote the set of’s corresponding
to the nonzero values regarding the symbolsand .
The nonzero products can be written as

(13)

Since refers to the nonzero positions of , that is, the
positions where the Hadamard sequences differ, the product

, always takes the value . Thus,
, for . The products and

may equal either or . By absorbing the signs
in the complex noise samples without changing their statistical
properties, we can equivalently write (12) as

(14)

Rearranging terms in (14) leads to

(15)

Letting , (15) may be rewritten as

(16)
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Since are Gaussian random variables, (16) may be rec-
ognized as a Hermitian quadratic form of Gaussian random
variables that can be written in matrix form as

(17)

where the superscriptdenotes Hermitian transpose. The size
of the vector and the rectangular matrix vary with
respect to the specific symbolsand and may take values
in the range . Additionally, the specific samples
that take part in the quadratic form depend onand . We
dropped the superscripts from for simplicity. The sets

together with the matrices and that arise for
are given in detail in the Appendix. The PEP, that is,

, can now be computed by evaluating
the Laplace transform of the probability density
function of and then using the inversion formula

(18)

with chosen so that the integration path is contained in the
intersection of the region of convergence of and the
right half-plane [11]. The Laplace transform of
is given by the general formula [12]

(19)

where is the mean of the vector is the real-valued
covariance matrix defined by
and is the identity matrix of proper size. For the Rayleigh
fading case under consideration, , so . Thus,
(19) can be simplified to

(20)

where are the eigenvalues of the product matrix
. The elements of the covariance matrix can

be easily computed by the second moments of, which after
normalization with , result in

(21)

where the subscripts take values governed by the set ,
specifically, the values of the set plus the new (not in the
set already) values that come out by subtracting 1 from the
set values. is the signal energy per information bit. After
substitution of (20) in (18), the PEP can be computed with
several methods, such as saddle-point integration [9], [13],
with the residues method [14] or with numerical integration
by proper choice of the value ofas described in [11].

B. M-ary Orthogonal Signaling

The PEP of the conventionalM-ary orthogonal scheme can
be computed by observing that the decision variables

are Rayleigh distributed as the envelope of
a Gaussian random variable that arises as a sum of Gaussian
random variables. Therefore, the PEP

can be calculated with the formula [13]

(22)

where is the joint probability density function of
two Rayleigh random variables coming out as the envelope of
two correlated Gaussian random processes, given by [12]

(23)

where and is the normalized
complex cross covariance between the two complex Gauss-
ian processes whose envelopes are represented by .
Substituting for (9), we get

(24)

where the product terms including a single noise sample or
different noise samples have zero mean. Observing that there
are noise terms of the form and
normalizing with we get

(25)

since
with the energy per transmitted bit. Similarly

(26)
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The cross covariance may be written as

(27)

The difference in this case is that the pure noise terms
result in a sum of the form

which equals zero because of the
orthogonality of the Hadamard sequences. Thus

(28)

It must be noted that, as in the case of DM-ary signaling,
although the above parameters are different with respect to
leading in different PEP’s, the same set of PEP’s arises for
every reference symbol.

The total symbol error probability, given that symbolwas
transmitted, may be upper bounded in both cases ofM-ary and
DM-ary signaling by the union of all of the error events, that is

(29)

Taking into account that all symbols are transmitted inde-
pendently with equal probabilities and the set of PEP’s is
identical for every transmitted symbol, it is obvious that (29)
accounts for the symbol error probability regardless of which
was the transmitted symbol since

. Finally, the BEP can be calculated as
.

IV. RESULTS AND DISCUSSION

For the calculation of the PEP’s in the DM-ary orthogonal
case, we used either the method of residues or the method
described in [11] when the number of eigenvalues is large.
This second method is based on the reduction of the inverse
Laplace integral of (18) in a sum using a Gauss–Chebyshev
quadrature. The value ofwas set equal to the one half of the
real part of the pole of with the smallest positive real
part which corresponds (20) to the most negative eigenvalue
(all eigenvalues are real).

In Fig. 3, we present simulation results of the BEP versus
the signal to noise-plus-interference ratio for three
different cases regarding the number of spreading chipsper
Hadamard chip. The analytically derived BEP (union bound)
is also shown for comparison purposes. Obviously, the value
of does not significantly change the performance of the

Fig. 3. DM-ary BEP simulation results for different numbers of spreading
sequence chips per Hadamard chip in comparison with numerical BEP for
M = 64 and normalized Doppler shiftfDN = 1:0.

Fig. 4. PEP’s of M-ary and DM-ary orthogonal signaling schemes for
M = 8 at a normalized Doppler shiftfDN = 0:1.

system. Therefore, the assumption of or that the channel
statistics do not change when viewed at the Hadamard chip
rate is valid. The independence of the BEP with respect tois
very important since the multiple-access interference reduction
capability of the system is independent of the differential
encoding process, in contrast to [9] where differential encoding
was applied at the spreading chips.

Figs. 4 and 5 present the PEP’s of theM-ary and DM-
ary schemes at normalized Doppler shifts of 0.1 and 1.0,
respectively, for . There are only five curves for the
DM-ary scheme since, as explained in the Appendix,
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Fig. 5. PEP’s ofM-ary DM-ary orthogonal signaling schemes forM = 8

at a normalized Doppler shiftfDN = 1:0.

and . For low Doppler shift (Fig. 4), the
conventional system’s performance is better for low signal-to-
noise ratios. This is expected because of the extra noncoherent
combining loss introduced in the multiple differential decoding
processes necessary for the detection of one symbol in the DM-
ary case. But, for higher the PEP’s of theM-ary case
suffer from an error floor resulting from the Doppler shift.
The performance enhancement of the DM-ary signaling is
clear at higher Doppler shifts (Fig. 5). The resulting difference
in the PEP’s between the two schemes is several orders of
magnitude. The total BEP is mainly governed, as can be
easily deducted from (29) (see also [7]), by the worst PEP’s.
Therefore, the difference of the BEP’s of the two schemes will
be tremendous. It should also be noted that for
an error floor occurs for DM-ary too, but at higher .

Figs. 6 and 7 show BEP results for the two schemes under
consideration at normalized Doppler shifts of 0.1 and 1.0, re-
spectively, for several symbol set sizes. For low Doppler shift
(Fig. 6), the conventional scheme outperforms the differential
scheme for signal to noise-plus-interference ratios under 15 dB
due to the noncoherent combining loss mentioned above. For
higher Doppler shifts (Fig. 7), the use of the conventionalM-
ary scheme is impossible since the orthogonality loss between
the Hadamard symbols is crucial and leads to completely
unacceptable performance in all cases of. The
curve is only plotted for simplicity for the conventional case
since curves for other give almost the same result. On the
other hand, DM-ary orthogonal signaling proves very resisting.
The overall performance is enhanced as the Doppler shift takes
higher values for all cases. This behavior was also observed
in [9], [15], and was explained as a “time diversity” effect
since the faster signal distortions due to higher Doppler shift
are averaged after correlation (that includes summation over
the samples) with the Hadamard sequences at the receiver.
The error floor that the case presents at

Fig. 6. BEP results ofM-ary and DM-ary orthogonal signaling schemes at
a normalized Doppler shiftfDN = 0:1 for variousM .

Fig. 7. BEP results ofM-ary and DM-ary orthogonal signaling schemes at
a normalized Doppler shiftfDN = 1:0 for variousM .

will appear at higher Doppler shifts for larger symbol sets. This
fact, together with the small performance difference between
the several values (increase of leads to performance
enhancement at ), guarantees better performance
with larger symbol sets if we take into account the increase in
bandwidth efficiency that greater values offer. This, on the
other hand, allows the use of longer spreading sequences as

increases, leading to multiple-access interference reduction
and higher capacity.

In order to determine the range (with respect to Doppler
shift) of applicability of DM-ary orthogonal signaling, we plot
in Fig. 8 the BEP of both schemes versus the normalized
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Fig. 8. BEP results ofM-ary and DM-ary orthogonal signaling schemes
versus the normalized Doppler shift forM = 8 andM = 16 atEb=N

0

0
= 20

dB.

Doppler shift , for and , at
dB. Except from the clear performance enhancement that

offers with respect to we observe that the
lowest BEP occurs at a normalized Doppler shift on the order
of (the minimum position with respect to does not
change for other signal-to-noise ratios). Additionally, it is clear
that an increase of leads to a wider low-BEP region, which
means that acceptable performance is evidenced in a wider
range of Doppler shifts as increases. For the
lower BEP will appear at . Assuming a symbol rate
of ksymbols/s ( kbits/s), the lower BEP will
appear at a Doppler spread of about 21 kHz, which is normal
to be evidenced in LMS channels. We, therefore, conclude that
DM-ary signaling is well suited for LMS applications.

V. CONCLUSIONS

We presented and analyzed a differentiallyM-ary orthogonal
(DM-ary) signaling scheme based on chip-by-chip differential
encoding/decoding at the Hadamard chip level. Although we
did not encounter a specific LMS channel model in our
analysis, we presented a general analytical framework, and
applied it to a Rayleigh fading environment characterized by
high Doppler shifts that arise in LMS channels. The presented
results showed that, while for low normalized Doppler shifts
the conventionalM-ary scheme performs better, the proposed
scheme presents very good performance, and can effectively
combat high Doppler shifts that appear in LMS channels,
where conventionalM-ary signaling is not applicable without
any special device. It was shown that larger symbol sets lead
to better performance, presenting minimum BEP at

. Therefore, DM-ary orthogonal signaling gives the op-
portunity of constructing bandwidth-efficient nonpilot-aided
systems that combat high Doppler shift without any reduction
of the multiple-access capability that maintains the well-known
characteristics ofM-ary orthogonal CDMA schemes.

APPENDIX

The quadratic forms that arise in the calculation of the
PEP’s consist of different size matrices regarding the symbols

(reference symbol) and that are encountered in the
calculation of the PEP. As explained in Section III, the same

sets arise regardless of the reference symbol, thus
producing identical quadratic forms. Here, the case of
is described in detail. The Hadamard matrix containing the
eight possible transmitted sequences is

(30)

Assuming, without loss of generality, that the reference symbol
is the zeroth , the sets , the vectors and the
matrices that produce the quadratic forms for each one
of the symbols, are
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As shown, some of the arrays of quadratic forms are
repeated, that is, and . We also
observe that the sets of the specific samplesthat take part

in the mentioned quadratic forms are a shifted version of each
other, that is, the samples of the 0, 3 symbols’ quadratic form
can come out of the 0, 2 symbols’ quadratic form by the
transformation . This fact brings along equality of
the corresponding covariance matrices, that is,
and , resulting in identical PEP’s. It should also
be noted that the product matrices , that
are of the same size as and , always have an even
number of nonzero real eigenvalues, half of which are positive.

ACKNOWLEDGMENT

The authors are grateful to the anonymous reviewers for
their helpful comments and suggestions.

REFERENCES

[1] M. Chase and K. Pahlavan, “Performance of DS/CDMA over measured
indoor radio channels using random orthogonal codes,”IEEE Trans.
Veh. Technol., vol. 42, pp. 617–621, Nov. 1993.

[2] L. F. Chang, F. Ling, D. D. Falconer, and N. R. Sollenberger, “Com-
parison of two convolutional orthogonal coding techniques for CDMA
radio communications systems,”IEEE Trans. Commun., vol. 43, pp.
2028–2037, June 1995.

[3] A. C. Iossifides and F.-N. Pavlidou, “Performance of RS-coded
DS/CDMA microcellular systems withM-ary orthogonal signaling,”
Wireless Personal Commun., accepted for publication.

[4] A. Jalali and P. Melmenstein, “Effects of diversity, power control, and
bandwidth on the capacity of microcellular CDMA systems,”IEEE J.
Select. Areas Commun., vol. 12, pp. 952–961, June 1994.

[5] R. D. Gaudenzi, T. Garde, F. Gianneti, and M. Luise, “A performance
comparison of orthogonal multiple access techniques for mobile satellite
communications,”IEEE J. Select. Areas Commun., vol. 13, pp. 325–332,
Feb. 1995.

[6] A. L. Kachelmyer and K. W. Forsythe, “M-ary orthogonal signaling
in the presence of Doppler,”IEEE Trans. Commun., vol. 41, pp.
1192–1200, Aug. 1993.

[7] T. Wada, T. Yamazato, M. Katayama, and A. Ogawa, “A NewM-
ary/SSMA scheme applicable in LEO satellite communications sys-
tems,” in Proc. GLOBECOM’96, London, England, Nov. 1996, pp.
384–389.

[8] A. C. Iossifides and F.-N. Pavlidou, “Performance of DS/CDMA sys-
tems with differentialM-ary orthogonal modulation and RS-coding
for LEO satellite communications,”Inter. Jour. on Satellite Commun,
accepted for publication.

[9] A. Cavallini, F. Giannetti, M. Luise, and R. Reggiannini, “Chip-level
differential encoding/detection of spread-spectrum signals for CDMA
radio transmission over fading channels,”IEEE Trans. Commun., vol.
45, pp. 456–463, Apr. 1997.

[10] A. J. Viterbi, CDMA: Principles of Spread Spectrum Communication.
Reading, MA: Addison-Wesley, 1995.

[11] J. Ventura-Traveset, G. Caire, E. Biglieri, and G. Taricco, “Impact of
diversity reception on fading channels with coded modulation—Part
II: Differential block detection,”IEEE Trans. Commun., vol. 45, pp.
677–686, June 1997.

[12] M. Schwartz, W. R. Bennett, and S. Stein,Communication Systems and
Techniques. New York: McGraw-Hill, Inc., 1966.

[13] C. W. Helstrom,Elements of Signal Detection and Estimation. Engle-
wood Cliffs, NJ: Prentice-Hall, 1995.

[14] P. Ho and D. Fung, “Error performance of multiple-symbol differential
detection of PSK signals transmitted over a correlated Rayleigh fading
channels,”IEEE Trans. Commun., vol. 40, pp. 1566–1569, Oct. 1992.

[15] F. Giannetti, M. Luise, and R. Reggiannini, “Performance evaluation of
a continuous-phase CDMA modem operating over the 60 GHz mobile
radio channel,”Eur. Telecommun. Trans., vol. 7, pp. 255–265, May–June
1996.



222 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 17, NO. 2, FEBRUARY 1999

Athanassios C. Iossifideswas born in Alexan-
droupolis, Greece, in 1969. He received the diploma
in electrical engineering from Aristotle University
of Thessaloniki, Greece, in 1994.

He is currently working toward the Ph.D. de-
gree at Aristotle University of Thessaloniki. He is
involved in European COST programs concerning
mobile satellite or terrestrial communications, and
he has served as a temporary Professor for the Tech-
nological Institute of Thessaloniki for two years. His
main research interests lie in the area of terrestrial

and satellite mobile communications, with emphasis on CDMA applications
and channel coding techniques.

Mr. Iossifides is a member of the Technical Chamber of Greece.

Fotini-Niovi Pavlidou (S’86–M’87) received the
Diploma in electrical and mechanical engineering
and the Ph.D. degree in telecommunications net-
works from the Aristotle University of Thessaloniki,
Greece, in 1979 and 1988, respectively.

She is with the Department of Electrical and
Computer Engineering of the above Institution,
where she offers courses on Mobile Communi-
cations and Telecommunications Networks. Her
research interests include traffic analysis and design
of networks, performance evaluation and QoS

studies of mobile satellite communications, and multimedia applications over
the Internet. She is involved in European Projects (Telematics, COST Actions,
Tempus.), as well as in national projects in the referred scientific areas.

Dr. Pavlidou has served on the Program Committees (as a member or
chairperson) of many conferences and workshops supported by IEEE/IEE.
She is a member of the IEEE Communications Society and the Technical
Chamber of Greece.


