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A New Evaluation Criterion for Clos- and
Benes-Type Rearrangeable Switching Networks

loannis GragopoulosStudent Member, IEEEand Fotini-Niovi PavlidouMember, IEEE

Abstract—An extended comparison and a classification of the that is, connections are studied in batch for all input-output
control algorithms for rearrangeable switching networks is tried  pairs. Parallel control algorithms are further splitted in matrix
in this study. Besides of the failure probability Py a new eval- decomposition and scheduling techniques [3]-[5], [8]. Each

uation criterion is introduced, the mean number of rearranges f th is showi dvant d disadvant it
R, the network performs in order to satisfy incoming calls. A ©ON€ Of them IS Showing advantages and disadvantages, |

simulation comparison for eight control algorithms concerning W€ €xamine its running time of computation, or the failure
clos-type networks and networks with 2x 2 elements is attempted probability. Recently, an algorithm [5], [4] has been proposed

with very helpful results for the network design. Furthermore, \hich presents a really improved performance over the others.

some deadlock conditions discovered in one of these algorithms |, his paper an in-depth study of the characteristics and the
are completely recovered. The comparison is carried out for both o . .
possibilities of all these algorithms is tried.

evaluation criteria (R, and Py) and it is shown that the new
criterion leads to a deep insight of the systems, necessary for a
successful network design. B. Benes-Type Networks

Index Terms—Rearrangeable networks, routing, switching. There are some well established techniques to construct a
rearrangeable network starting of a single square matrix. By
the recursive procedure it is possible to start with a single
square matrix, then substitute it by a three stage network (Clos-
N a rearrangeable network we can satisfy an incomingpe networks) then substitute the matrixes in the center stage,
call after properly changing the previously establishegith new three stage networks, etc. For the special cadé of
paths. The most studied structure of rearrangeable netWOQk§ n being a positive integer, we can recursively construct a
is the Clos network, but 2« 2 structures have also beerrearrangeable network by factorimg into N/2 first-stage 2
proposed recently for high speed networks. In this study we 2 switches and twav/2 x N/2 middle-stage switches. The
examine both cases: Clos structures for analog networks gagulting network is called Benes network [7]. The intercon-
Benes structures for modern high speed telecommunicatiQigtion networks, with 2 2 elements, studied in this paper

I. INTRODUCTION

networks. are the Benes, the perfect-shuffle and the flip network [7]. One
method of establishing the connections in these type networks
A. Clos-Type Networks is via the looping algorithm [7]. The looping algorithm is the

A N x N Clos-type network [7], is a three-stage switch iflnost representative serial processing algorithm. Since then
which the V inlets (outlets) are partitioned inta subgroups more sophisticated control algorithms have been developed.
of n inlets (outlets) and the center-stage consists: afub- For purposes of comparison four control algorithms have been
groups withm inlets and outlets each. For rearrangeability thésed: @) An extension of the looping algorithm, established
condition for zero failure probability is. > m. by Andresen [1], b) a generalization of the looping algorithm

Various control algorithms for Clos-type switching network&eveloped by Lea [9], c) a parallel processing algorithm
have been extensively studied the last decades, in order'@dlized by Huang and Tripathi [6] based on a model that they
decrease the size of the switch, assuming in parallel a higfveloped, known as finite permutation machine (FPM), to
capability to realize all possible permutations. These contr@gscribe the permutation networks and d) a control algorithm
algorithms can be developed generally after two differefi€veloped by Raghavendra and Varma [10] that is specific only
techniques. In the first technique connections can be estibthe case of five-stage shuffle/fexchange networkos 8.
lished on a call-by-call basis, i.e., a connection is set up forWe carry out the study and the comparison of control
each new call, rearranging if necessary some of the existifgorithms (for Clos and Benes-type networks and networks
connections. This is the well-known, classical Paul Matriwith 2 x 2 elements), applying two evaluation criteria, the
technique and its modifications [7]. In the second techniqu&€an number of rearranges,, needed to satisfy changes

a parallel processing of the incoming calls is carried odf) the call pattern and the probability of failu;, which

_ indicates the capability of the network to service a call. The
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The rest of the paper is organized as follows: In Sectiaross checked with all the columns &f,,. This procedure
Il we present the existing algorithms for clos-type networkss time consuming and leads to a sophisticated code. The
in Section Il we present shortly the existing algorithms focomplexity of the algorithm isO(2’“) using one processor
the case of rearrangeable networks withx22 elements, and O(k) using2* processors, wherg* are all the possible
in Section IV we give numerical comparative results ansets of rows of the matri¢{,,.
in Section V the conclusions. In Appendix A we give an
example where the Chiu-Siu algorithm fails and we presept Gordon-Srikanthan Algorithm
our correction technique. In Appendix B a comparison of the
control algorithms for Clos type networks is given, using thB
failure probability P.

Gordon and Srikanthan [5] developed a control algorithm
ased on a completely new technique called scheduling. One
year later Chiu and Siu proved that Gordon-Srikanthan al-
gorithm falls to deadlocks for some permutations and they
presented a modification [4] of the original algorithm.

Three algorithms are the most representative for parallelThe core of this algorithm consists of two digital matrixes
rearrangeable control. Jajszczyk algorithm and Carpinelli-Oguand C with ones and zeroes. For a given permutation
algorithm based on matrix decomposition techniques attte m x » matrix S is constructed, where each eleméni]
Gordon-Srikanthan algorithm based on the scheduling methdednotes that théth input of theith first-stage switch, demands
Only the Carpinelli-Oru algorithm always succeeds to routsnnection with thes;; third-stage switch1 < ¢ < m,1 <
any permutations through the Clos network. We give a brigf< n). Then them x n matrix C is constructed where each
description of the algorithms pointing out details of theielementc;;] denotes the number of occurrences of the number
performance. The call pattern is given by a permutation vectpin the column; of the S matrix. The algorithm continues
P of input—output connections in any of these algorithms. by swapping the elements & until the matrix C contains

only ones. The solution is obtained by observing that after
A. Jajszczyk Algorithm the manipulation of theS matrix, the s;; element may be
For a given permutatio®, am x m square matrixH,(,?) is interpreted as the output subnetwork to which the signal from

constructed, where each eleméhy;] denotes the number of NPUt Stagei and center stagg is routed.

connections from théth first-stage switch to thgth third-stage ~ EVen If the Chiu-Siu algorithm is very recent and well
switch (1 < i <m, 1< j <m) [8]. An elementary permuta- performing we have found after extended computer simulation

tion matrix £ is one for which the sum of any row and CO|umr@pplications that the algorithm fails to converge in some cases.

is unity. The objective purpose of the algorithm is to extracte 9ive @ brief example and our correction technique in

from the matrixH, n square matrixeg of m x m dimension #\PPENdX A.

each. TheF matrixes denote permutations realized by the

middle-stage switches for path establishment. The computation lll. DESCRIPTION OFALGORITHMS FOR

complexity of the algorithm iD(nm?). NETWORKS WITH 2 x 2 ELEMENTS
The problem is that in many cases matHxresults in rows

or columns with only zero elements leading the algorithf. Andresen Algorithm

to deadlocks. Because of the random selection of nonzerorhe extended looping algorithm is based on decomposition
elements we cannot predefine what the result will be aftﬁ:_l'chnique, generating a suitable decomposition in a pure
a few repetitions. One way to solve deadlock situations équential manner. An arbitrary permutatiBris represented
the backtracking method. With the backtracking method thg 3 v x vV dimensions matrix(Z. A z in the position {, 5)
algorithm goes back in order to select a different nonzegy the matrix M indicates that the input is to be connected
element. We can backtrack as many repetitions as necessgrhe outputj. The algorithm results to an index in every

to solve the deadlock, (if there is any solution), or we caR the matrix/ indicating the number (in binary form) of the
backtrack by jumping back a fix number of steps. BotBenter switches through which the permutation must be routed.

Il. DESCRIPTION OFALGORITHMS FORCLOS-TYPE NETWORKS

techniques are checked in Appendix B. Although in the original paper [1] the algorithm is applied
o _ to a Clos network, we introduce an application for the case
B. Carpinelli-Oru Algorithm of networks with 2 x 2 elements in a recursive manner.

The algorithm—based on Jajszczyk method—works onTaie resulting code for an arbitrary permutatigh with N
trial, to predefine and avoid deadlock situations, leading taputs—outputs, is presented in the following steps.
matrix H partitioning (existence of zero rows or columns) [3]. 1) Setk = 1.

The algorithm begins by setting up the mattik,, in the 2) Seti = 0.

usual way. Then the matrix is checked for possible partitions.3) Construct the permutation s&, = {P|,---,|F:}
If no partitions are found the algorithm proceeds as the where each elemenb;, is a new permutation row
Jajszczyk method. If a partition exist&,,, matrix is divided vector with N/k elements. TheP, matrixes denote

into two submatrixes and the whole procedure is applied for the new permutations that will be established to the
each submatrix in a retrospective way. As it is obvious the subnetwork in the center stage. For the first repetition
algorithm never fails so it needs no backtracking. But all the P, = P.

possible subsets of rows of the mat#i, must be found and 4) Setj; = 1.
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5) Apply the extended looping algorithm for eaéh. 127

6) Setj=j+1.If j > k stop, else goto step 4). PN “

7) Setk = 2xk. 1. .7\ L O
8) Seti =i+ 1. ] Tl

9) Compute column and column2log, N — ¢ of matrix 8 ]

E. The columni of matrix £ denotes the switch
settings ofi stage in binary form.
10) If ¢ <log, N — 1 go to step 3). Else stop.

R,

B. Finite Permutation Machine (FPM) Algorithm ) - ~< . 4

This algorithm aims to define the settings ok22 switches . ] v
for all Zstages for shuffle-exchange networks. It consists of ]
3R — 3 stages withN/2 2 x 2 switches each, wher& = O = T T
log, N. A binary representation of any arbitrary permutation is ! 7
made and a matri¥) with N rows andlog, N binary column
vectorsV; is constructed,D = [V1, V5, --+]. Inputs are also
represented in binary format and a matii% = [Z1, Zo,- -]
is derived, whereZ; arelog, /N binary column vectors. The
algorithm continues by making shuffle and exchange opel’_aig- 1. Mean number of rearranges of the four algorithms for>a 4 Clos
tions in both theD and M,; matrixes and the result of thenetwork'
algorithm is a matrix®' in binary form consisting ofV rows
and3R — 3 columns. Each column denotes the settings of the
switches of the corresponding stage. T

] x1000
Incoming calls causes rearranges

------ 4x4 Chiu-Siu Algorithm
— - — - 4x4 Carpinelli-Oruc Algorithm

dx4 Jajszezyk Algorithm
— — — 4x4 Modified Algorithm

C. Lea Algorithm

The Lea algorithm [9] is actually a generalization of the
looping algorithm. Functiom(k) converts the inlet vertex R
to the number of its butterfly inlet partner. Functigfk) does
the same conversion for the outlet vertices. The algorithn
begins with the construction of a sequence of outlets and the ]
source inlets. The outlet sequence is denoteddy, oy, , - - -} i
and the inlet sequence is denoted{py, ,,,, - - -}. During the ]
process of composition, the inlets and outlets will be assigne L y
to either the upper or lowelN/2 x N/2 subnetwork, and ' 7 13 19 25 3 37 43

the corresponding states of the switching elements will b N0
determined accordingly. Assuming , i.e.,l; = 1, assign it to
the upper subnetwork and indicate it by the notatigr{l/).
Then oy, wherel, = ¢(I), has to be assigned to the lower

Incoming calls causes rearranges

8x4 Jaszezyk Algorithm
— — — 8x4 Modified Algorithm

8x4 extended looping algorithm

------ 8x4 Chiu-Siu Algorithm
— - — - 8x4 Carpinelli-Oruc Algorithm

subnetwork, i.e.o, (L). Assume the source inlet afy, is
ij,, theni; has to be connected to the low&f/2 x N/2
subnetwork, i.e.i;, (L), so thati; and o;, will use the
lower subnetwork to establish the connection. This procedure

continues until all the inlet-outlet pairs will be assigned tétage of the network. This partitioning is done in such a way
either upper or lower subnetworks without any blocking. Théat no conflicts arise in either the first or the last two stages
same procedure can be applied to M2 x N/2 subnetworks of the network. The algorithm is executed in six steps two of
until all the nodes in the network are set up to the correct statéieme using the well-known looping algorithm.

Fig. 2. Mean number of rearranges of the control algorithms (including
extended looping algorithm) for a 8 4 Clos network.

IV. NUMERICAL COMPARISON—THE
NEwW PERFORMANCE CRITERION

D. Raghavendra—Varma Algorithm [10]

The algorithm deals exclusively with shuffle-exchange
switching networks with maximum number of use¥s= 8, The numerical evaluation of rearrangeable algorithms was
consisting of five stages and fourx2 switches per stage. always based on the study of the failure probability and
For routing arbitrary permutations on the five-stage binatile complexity of the codes. As we have mentioned in the
network we split the connections of the permutation intmtroduction we apply for the first time a new criterion, the
four connection sets, consisting of two connections each, amg¢an number of rearrangés,,, in order to have an in-depth
assign each connection set to one of the switches in the midtHsting of these algorithms for any network design.
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Fig. 3. Histogram of the percentage of permutations for different mean number of rearranges for the control algorithms including the extended
looping algorithm.

A. Clos-Type Switching Networks control algorithm demands different number of stages in order
In the following figures in theX-axis we have the numberto realize all the possible permutations. Therefore, a direct

of new incoming calls causing network rearranges. In Fig.cPmparison of the mean number of rearranges (as in the clos
the mean number of rearrangss, is given for 4x 4 Clos networks) of all control algorithms is of no use, since the
2

network. We observe that our modified algorithm shows tHimber of crosspoints is different for each one of them. Thus,

minimum mean number of rearranges and the Carpinelli—OrfY€ compare the percent ratio &, (£,,%) over the number
crosspoints of each structure.

algorithm holds the maximum. The Chiu-Siu algorithm showd

the most stable mean value which means that the variance of "€ first comparison concerns the perfect shuffle network
the number of rearranges is small. A high value of variané1® Andresen algorithm and the Lea algorithm have been
declares that the number of rearranges is not easily predictaplied for this case). The results for the case Nof =
when altering different elements in the permutation matri®. and N = 32 are given in Figs. 4-5 correspondingly.
This result is clearly demonstrated in Fig. 3, where the me¥¢ observe that for small networksV( = 8) no clear
number of rearranges according to the percentage of perfiifférence can be recorded in the algorithms performance.
tations is given. The Chiu-Siu algorithm holds the minimurhN€ algorithms present unstable performance according to the

variance of the number of rearranges even if the network sii§an percentage number of rearranggs%. As the size

increases. The variance of the other algorithms depends @nthe network increases the performance of the algorithms

the size of the network. If the network size increases the melficomes more stable and for the caseof= 32 the Lea
number of rearranges increases too with different percentag0rthm presents almost constant behavior. On the other hand
for each algorithm as we can see in Fig. 2. We must mentid}¢ Huang-Tripathi algorithm has the minimum mean number

that by our modification we succeed to keep a relatively lof "€&rranges, but with less stable performance.
variance while getting the loweR,,,. Results are very similar for Benes and flip networks. More

precisely the only significant difference is for the Benes
network. This kind of network is constructed by a recursive
procedure leading to separate subnetworks inside the switching

Although the extended looping algorithm can be applied infapric. In other words, any arbitrary call has less flexibility for
switching networks with 2x< 2 elements, it was realized for yjiocating the available paths. So, for the Benes network the
the clos-type switching networks. So we can try a comparisgfyorithms present more stable performance as it is shown in
of it with the previous control algorithms for clos networksFig_ 6. Additionally the mean number of rearranges % for

The results are shown in Fig. 2. We can see that the extenggg Andresen algorithm is reduced to a very low value for the
looping algorithm presents a mean number of rearraf)gs case of Benes network.

very close to our modified algorithm. The stability of the
algorithm can be seen in Fig. 3, whefg, holds an almost
exponential behavior with the percentage of permutations,
which is not an acceptable result for network design. From the above analysis, we can conclude that our mod-
The next investigation concerns control algorithms for neification of Chiu-Siu algorithm presents the most attractive
works with 2 x 2 switching elements and specifically thegperformance in terms of the mean number of rearranges
perfect shuffle network, the benes network and the flip netithout being very complicated. Specifically it is slightly more
work for various sizes. As it was previously mentioned eaadomplicated than Chiu—Siu algorithm which is really a simple

B. Switching Networks with 2 2 Elements

V. CONCLUSION
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Fig. 4.

R, (%)

Fig. 5. The four control algorithms for the shuffle/exchange network for

R (%)

0 2 4 6 8 10 12 14
. x1000
Incoming calls causes rearranges
S. Andresen - --- - Huang-Tripathi
—— = C-T. lea — - — - Raghavendra-Varma

The four algorithms for the shuffle/exchange network¥oe 8.

8 <

7

Incoming calls causes rearranges

S. Andresen - ----- Huang-Tripathi — — — C-T. Lea

N = 32.

algorithm. The Andresen algorithm for the Clos network case
presents similar behavior to Chiu—Siu modified algorithm. On
the other hand the Andresen algorithm is based on the looping
algorithm which is a pure sequential algorithm, in contrast to
our parallel computing (and more fast in application) modified Fifth repetition:i = 2,5 = 3,k = 1,u = 2
algorithm. For the case of networks withx2 2 elements the
comparison is more complicated. These algorithms are more 1 1
sensitive to the size of the network in contrast with the control = 0 1*
algorithms for Clos networks. In addition, the architecture of
the networks plays important role to the mean number of
rearranges. We can conclude that Lea algorithm seems to bé
the more stable according to the size and the architecture of the
network, showing a moderat®,, with the lowest variance.
After this analysis, we can state that the new criterion
introduced gives us an in-depth knowledge for the properties

123

of each structure, it is applicable both to Clos-type and Benes-
type networks and it can give a common base for design of
any type of switching network.

APPENDIX A

Even if the Chiu-Siu algorithm is very recent and well
performing we have found after extended computer simulation
applications that the algorithm fails to converge in some cases.
We give a brief example assuming a ¥616 Clos network
with m = 4 (first-stage switches) and = 4 (middle-stage
switches). We select the following permutation matFix

10 1 2 3 4 5 6 7 8
T |11 14 0 12 8 2 6 4 3

9 10 11 12 13 14 15

P

7 5 9 13 1 15 10|
The S and C' matrix are given [5] by
2 3 0 3 1 2 1 0
2 01 1 0 1 2 1
§= 0 1 1 2 ¢= 2 0 0 2
3 0 3 2 1 1 11
First repetition:i = 1,7 =0, k=2, u =1
2 3 0 37 rl 2 1 07
1 0 2¢ 1 1T 1 1= 1
S = o 1 1 2 ¢= 1= 0 1t 2
3 0 3 2] L1 1 1 1]
Second repetitioni = 2, = 1,k = 3,u = 2
2 3 0 3 7 1 2 1 0 7
1 0 21 1 0- 1 2t
S = 0o 2 1 1* ¢= 1 1t 1 1-
3 0 3 2 | 1 1 1 1 |
Third repetition:i = 0,5 = 3,k = 1,u =
2 3 0 3 7 1= 1 17%7
1 0 21 1 0 1 2
§= 0 2 1 1 ¢= 1 2t 1 0
13 2* 3 0] 11 1 1 1 |
Forth repetition:: = 1,j = 1,k =3,u =1
2 3 0 3 7 1 0~ 1 2%7
1 1 2 0 1 1t 1 1-
§= 0 2 1 1 ¢= 1 2 1 0
3 2 3 0 | 11 1 1 1 |
2 3 0 3 7 1 0 1 2 7
+ j—
2 0* S LA 0+
1 2 1 1 1 1
3 2 3 0 | 11 1 1 1 |
Sixth repetition:i = 0,5 = 1,k = 3,u = 3
2 3 0 3 7 1t 1 177
Jrt 1 20 o_ |t 2 10
01 1 2 “ |1 0 1 2t
3 0" 3 2% L1 1 1 1 |
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R .. (%)

0 2 4 6 8 10 12 14
. x1000
Incoming calls causes rearranges
S. Andresen/Benes - - - - - C-T. Lea/Benes
— — — S. Andresen/Perfect Shuffte — - — - C-T. Lea/Perfect Shuftle
Fig. 6. The Andresen and Lea algorithm for the case of perfect shuffle and
Benes network.
Seventh repetitioni = 1,7 =3,k =1,u =1
2 3 0 3 1 2t 1 0
1 0 2 1* 11— 1 1t
S = C=
0 1 1 2 1 0 1 2
3 0 3 2 1 1 11
If we continue the repetitions, the algorithm enters into a

nonstop loop from the fifth to seventh repetition by swap}
ping the same elements(1,1) — S(1,3), S(2,1) — S(2,3),
S(3,1) — S(3,3) and finally holes (zeroes) are created in the
C matrix.

In order to avoid similar situations, we propose a simple¢
correction technique: At any swapping of a pair we look bac
in the C' matrix in order to ensure that no holes have bee
created. If a hole is found we choose this element and w
continue the process leaving only satisfied columns to th
left. The flow chart in Fig. 7 explains the Chiu-Siu modified

algorithm in details. Our modification is indicated by the =

dashed box.
The application of this modification the previous example
gives

p— 0 1 2 3 4 5 6 7 8
T |11 14 0 12 8 2 6 4 3
9 10 11 12 13 14 15
7 5 9 13 1 15 10}°
The initial S and C matrixes are
2 3 0 3 1 2 1 0
2 0 1 1 01 2 1
5= 0 1 1 2 ¢= 2 0 0 2
3 0 3 2 1 1 1 1
First repetition:i = 1,7 = 0,k =2,u =1
2 3 0 3 1 2 1 0
1* 0 2¢ 1 1t 1 17 1
5= o 1 1 2 ¢= 1-— 0 1+ 2
3 0 3 2 1 11 1

I

C(ij)=0

S(u,k)=i false

frue

inc{ C(ij) , C(S(u,j).K)}
dec{ C(i,k) , C(S(u.p).p)}
Swap S(u,k)-S(u,j)

( ciswk.i=0 )

{ true 1

|

i=8(u k)-1 j
|

e

false

Fig. 7. Flow Chart of the Chiu-Siu modified algorithm.

Second repetitioni = 2,5 = 1,k = 3,u = 2

2 3 0 37 2 1 0 7

10 21 1 00 1 2*
5= 0o 2 1 1* 0= 1 1t 1 1-

3 0 3 2 | 11 1 1 |

Third repetition:s = 1,5 = 1,k =3,u =1

2 3 0 37 117 1 1+

1 1 2 0* 1 1t 1 1-
5= 02 11 0= 11 11

3 0 3 2 | 11 1 1 |

We observe in the third repetition that the algorithm jumps

back in order to correct a hole that has been created in the
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100 ; 50
90 3

40 -

Ps(%)

Pys(%)

20 4

4 8 16 32 64
Carpinelli-Oruc Modified-Algorithm — — — Chiu-Siu n=4
Chiu-Siun=8§ ~ ------ Chiu-Siu n=16 — @ — Jajszczyk n=4 n
—+—Jajszczyk n=8 - - -=--lajszezykn=l6 m=4 m=8 — — — m=16

Fig. 8. Failure probability of the four control algorithms, as a function oFig. 9. Failure probability of the Chiu-Siu control algorithm according to
the dimensions of the Clos Networki n). the value ofn.

positionC(2, 2) after the second repetition. We have tested our 20
algorithm in a series of matrixes which failed to converge ]
by algorithm [8], and we always obtained correct results. 10
154 \
APPENDIX B ] ~.

We present an extended comparison of these algorithms— ] - — ]
using a well-known criterion, the failure probabilify;. S 0] )

In Fig. 8 the failure probability of the four algorithms for o
various sizes of Clos networks is given. We observe an inverse
exponential relationship of the failure probability with the net-
work size. The Chiu-Siu algorithm has the maximum failure
probability for large Clos Networks. The Carpinelli—-Oru and
our modification of the Chiu-Siu algorithm have zero failure
probability as it was expected.

In the same figure the failure probability of the Chiu-Siu

(/]

algorithm is studied in more detail. For every distinct value Number of Backtrackings
of n the factorm takes the values o -axis. We observe 16x8 nb needed - - - - - - 3248 nb needed
that the failure probability is greatly affected by the value of — — — 16x8 nb steps back — - — - 32x8 nb steps back

m, in other words an increment to the number of the first- ) . . ) ) )

. . Fig,10. Failure Probability of Jajszczyk algorithm with= 8 and various
stage switches leads to a great performance degradation,difes ofm. for the two methods of backtracking.
the control algorithm. On the other hand, the behavior of the

algorithm appears more stable to the variation of the number of o )
inputs per first-stage switch (value) as we can see in Fig. 9.Shown in Fig. 10. We observe that as the size of the network
Jajszczyk algorithm shows a similar behavior for differerificreases the number of backtrackings required to decrease the
values ofn. The basic idea of this algorithm is the decomfailure probability increases too. However, the first method of
position of them x m matrix H. The sum of any row or backtracking, in which we go back as many steps as needed
column of H matrix equals:. As the number of zeros in theto find a solution, never fails and the algorithm manages
H matrix increases, the probability of a deadlock increases td@. eliminate the failure probability even if the network size
The number of zeros in thH matrix depends basically on theincreases. If we apply the second method of backtracking,
dimensions ofH matrix and secondary to the value of In  going back fixed number of steps, the results are different as
Fig. 8 the failure probability is given according to the valuge observe in Fig. 10. The failure probability can not reach
of n. We observe that as theincreases the failure probabilitythe zero value, because the algorithm slides from the region
increases slightly (more than Chiu-Siu algorithm). In othavhere a wrong element had been selected and remains to a
words,n does not effect very much the failure probability. significant level. If the size of the network is increased the
The next investigation concerns the application of backerformance of the algorithm becomes worse as it can be seen
tracking method in the Jajszczyk algorithm. The results afiemm the same figure.
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For Benes-type networks no failure probability is applicabl~

since they work on self routing logic.

(1]

(2]
(3]

(4]
(5]
(6]

(7]
(8]

(9]
[10]
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