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Benes-Type Rearrangeable Switching Networks
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Abstract—An extended comparison and a classification of the
control algorithms for rearrangeable switching networks is tried
in this study. Besides of the failure probability Pf a new eval-
uation criterion is introduced, the mean number of rearranges
Rm the network performs in order to satisfy incoming calls. A
simulation comparison for eight control algorithms concerning
clos-type networks and networks with 2� 2 elements is attempted
with very helpful results for the network design. Furthermore,
some deadlock conditions discovered in one of these algorithms
are completely recovered. The comparison is carried out for both
evaluation criteria (Rm and Pf ) and it is shown that the new
criterion leads to a deep insight of the systems, necessary for a
successful network design.

Index Terms—Rearrangeable networks, routing, switching.

I. INTRODUCTION

I N a rearrangeable network we can satisfy an incoming
call after properly changing the previously established

paths. The most studied structure of rearrangeable networks
is the Clos network, but 2 2 structures have also been
proposed recently for high speed networks. In this study we
examine both cases: Clos structures for analog networks and
Benes structures for modern high speed telecommunications
networks.

A. Clos-Type Networks

A Clos-type network [7], is a three-stage switch in
which the inlets (outlets) are partitioned into subgroups
of inlets (outlets) and the center-stage consists ofsub-
groups with inlets and outlets each. For rearrangeability the
condition for zero failure probability is .

Various control algorithms for Clos-type switching networks
have been extensively studied the last decades, in order to
decrease the size of the switch, assuming in parallel a high
capability to realize all possible permutations. These control
algorithms can be developed generally after two different
techniques. In the first technique connections can be estab-
lished on a call-by-call basis, i.e., a connection is set up for
each new call, rearranging if necessary some of the existing
connections. This is the well-known, classical Paul Matrix
technique and its modifications [7]. In the second technique,
a parallel processing of the incoming calls is carried out,
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that is, connections are studied in batch for all input-output
pairs. Parallel control algorithms are further splitted in matrix
decomposition and scheduling techniques [3]–[5], [8]. Each
one of them is showing advantages and disadvantages, if
we examine its running time of computation, or the failure
probability. Recently, an algorithm [5], [4] has been proposed
which presents a really improved performance over the others.
In this paper an in-depth study of the characteristics and the
possibilities of all these algorithms is tried.

B. Benes-Type Networks

There are some well established techniques to construct a
rearrangeable network starting of a single square matrix. By
the recursive procedure it is possible to start with a single
square matrix, then substitute it by a three stage network (Clos-
type networks) then substitute the matrixes in the center stage,
with new three stage networks, etc. For the special case of

being a positive integer, we can recursively construct a
rearrangeable network by factoring into first-stage 2

2 switches and two middle-stage switches. The
resulting network is called Benes network [7]. The intercon-
nection networks, with 2 2 elements, studied in this paper
are the Benes, the perfect-shuffle and the flip network [7]. One
method of establishing the connections in these type networks
is via the looping algorithm [7]. The looping algorithm is the
most representative serial processing algorithm. Since then
more sophisticated control algorithms have been developed.
For purposes of comparison four control algorithms have been
used: a) An extension of the looping algorithm, established
by Andresen [1], b) a generalization of the looping algorithm
developed by Lea [9], c) a parallel processing algorithm
realized by Huang and Tripathi [6] based on a model that they
developed, known as finite permutation machine (FPM), to
describe the permutation networks and d) a control algorithm
developed by Raghavendra and Varma [10] that is specific only
to the case of five-stage shuffle/exchange network for .

We carry out the study and the comparison of control
algorithms (for Clos and Benes-type networks and networks
with 2 2 elements), applying two evaluation criteria, the
mean number of rearranges needed to satisfy changes
in the call pattern and the probability of failure , which
indicates the capability of the network to service a call. The
first criterion is a new criterion and has been proved very
valuable for evaluating control algorithms.

Also, after the detection of some fault conditions in the
recently proposed algorithm of Chiu–Siu [4] we introduce a
simple but effective correction technique.
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The rest of the paper is organized as follows: In Section
II we present the existing algorithms for clos-type networks,
in Section III we present shortly the existing algorithms for
the case of rearrangeable networks with 2 2 elements,
in Section IV we give numerical comparative results and
in Section V the conclusions. In Appendix A we give an
example where the Chiu–Siu algorithm fails and we present
our correction technique. In Appendix B a comparison of the
control algorithms for Clos type networks is given, using the
failure probability .

II. DESCRIPTION OFALGORITHMS FORCLOS-TYPE NETWORKS

Three algorithms are the most representative for parallel
rearrangeable control. Jajszczyk algorithm and Carpinelli–Oru
algorithm based on matrix decomposition techniques and
Gordon–Srikanthan algorithm based on the scheduling method.
Only the Carpinelli–Oru algorithm always succeeds to route
any permutations through the Clos network. We give a brief
description of the algorithms pointing out details of their
performance. The call pattern is given by a permutation vector

of input–output connections in any of these algorithms.

A. Jajszczyk Algorithm

For a given permutation , a square matrix is
constructed, where each element denotes the number of
connections from theth first-stage switch to theth third-stage
switch [8]. An elementary permuta-
tion matrix is one for which the sum of any row and column
is unity. The objective purpose of the algorithm is to extract
from the matrix square matrixes of dimension
each. The matrixes denote permutations realized by the
middle-stage switches for path establishment. The computation
complexity of the algorithm is .

The problem is that in many cases matrixresults in rows
or columns with only zero elements leading the algorithm
to deadlocks. Because of the random selection of nonzero
elements we cannot predefine what the result will be after
a few repetitions. One way to solve deadlock situations is
the backtracking method. With the backtracking method the
algorithm goes back in order to select a different nonzero
element. We can backtrack as many repetitions as necessary
to solve the deadlock, (if there is any solution), or we can
backtrack by jumping back a fix number of steps. Both
techniques are checked in Appendix B.

B. Carpinelli–Oru Algorithm

The algorithm—based on Jajszczyk method—works on a
trial, to predefine and avoid deadlock situations, leading to
matrix partitioning (existence of zero rows or columns) [3].

The algorithm begins by setting up the matrix in the
usual way. Then the matrix is checked for possible partitions.
If no partitions are found the algorithm proceeds as the
Jajszczyk method. If a partition exists, matrix is divided
into two submatrixes and the whole procedure is applied for
each submatrix in a retrospective way. As it is obvious the
algorithm never fails so it needs no backtracking. But all the
possible subsets of rows of the matrix must be found and

cross checked with all the columns of . This procedure
is time consuming and leads to a sophisticated code. The
complexity of the algorithm is using one processor
and using processors, where are all the possible
sets of rows of the matrix .

C. Gordon–Srikanthan Algorithm

Gordon and Srikanthan [5] developed a control algorithm
based on a completely new technique called scheduling. One
year later Chiu and Siu proved that Gordon–Srikanthan al-
gorithm falls to deadlocks for some permutations and they
presented a modification [4] of the original algorithm.

The core of this algorithm consists of two digital matrixes
and with ones and zeroes. For a given permutation

the matrix is constructed, where each element
denotes that theth input of the th first-stage switch, demands
connection with the third-stage switch

. Then the matrix is constructed where each
element denotes the number of occurrences of the number

in the column of the matrix. The algorithm continues
by swapping the elements of until the matrix contains
only ones. The solution is obtained by observing that after
the manipulation of the matrix, the element may be
interpreted as the output subnetwork to which the signal from
input stage and center stage is routed.

Even if the Chiu–Siu algorithm is very recent and well
performing we have found after extended computer simulation
applications that the algorithm fails to converge in some cases.
We give a brief example and our correction technique in
Appendix A.

III. D ESCRIPTION OFALGORITHMS FOR

NETWORKS WITH 2 2 ELEMENTS

A. Andresen Algorithm

The extended looping algorithm is based on decomposition
technique, generating a suitable decomposition in a pure
sequential manner. An arbitrary permutationis represented
by a dimensions matrix . A in the position ( )
of the matrix indicates that the input is to be connected
to the output . The algorithm results to an index in every
in the matrix indicating the number (in binary form) of the
center switches through which the permutation must be routed.

Although in the original paper [1] the algorithm is applied
to a Clos network, we introduce an application for the case
of networks with 2 2 elements in a recursive manner.
The resulting code for an arbitrary permutation with
inputs–outputs, is presented in the following steps.

1) Set .
2) Set .
3) Construct the permutation set

where each element is a new permutation row
vector with elements. The matrixes denote
the new permutations that will be established to the
subnetwork in the center stage. For the first repetition

.
4) Set .
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5) Apply the extended looping algorithm for each.
6) Set . If stop, else goto step 4).
7) Set .
8) Set .
9) Compute column and column of matrix

. The column of matrix denotes the switch
settings of stage in binary form.

10) If go to step 3). Else stop.

B. Finite Permutation Machine (FPM) Algorithm

This algorithm aims to define the settings of 22 switches
for all Zstages for shuffle-exchange networks. It consists of

stages with 2 2 switches each, where
. A binary representation of any arbitrary permutation is

made and a matrix with rows and binary column
vectors is constructed, . Inputs are also
represented in binary format and a matrix
is derived, where are binary column vectors. The
algorithm continues by making shuffle and exchange opera-
tions in both the and matrixes and the result of the
algorithm is a matrix in binary form consisting of rows
and columns. Each column denotes the settings of the
switches of the corresponding stage.

C. Lea Algorithm

The Lea algorithm [9] is actually a generalization of the
looping algorithm. Function converts the inlet vertex
to the number of its butterfly inlet partner. Function does
the same conversion for the outlet vertices. The algorithm
begins with the construction of a sequence of outlets and their
source inlets. The outlet sequence is denoted by
and the inlet sequence is denoted by . During the
process of composition, the inlets and outlets will be assigned
to either the upper or lower subnetwork, and
the corresponding states of the switching elements will be
determined accordingly. Assuming , i.e., , assign it to
the upper subnetwork and indicate it by the notation .
Then , where , has to be assigned to the lower
subnetwork, i.e., . Assume the source inlet of is

, then has to be connected to the lower
subnetwork, i.e., , so that and will use the
lower subnetwork to establish the connection. This procedure
continues until all the inlet-outlet pairs will be assigned to
either upper or lower subnetworks without any blocking. The
same procedure can be applied to the subnetworks
until all the nodes in the network are set up to the correct states.

D. Raghavendra–Varma Algorithm [10]

The algorithm deals exclusively with shuffle-exchange
switching networks with maximum number of users ,
consisting of five stages and four 22 switches per stage.
For routing arbitrary permutations on the five-stage binary
network we split the connections of the permutation into
four connection sets, consisting of two connections each, and
assign each connection set to one of the switches in the middle

Fig. 1. Mean number of rearranges of the four algorithms for a 4� 4 Clos
network.

Fig. 2. Mean number of rearranges of the control algorithms (including
extended looping algorithm) for a 8� 4 Clos network.

stage of the network. This partitioning is done in such a way
that no conflicts arise in either the first or the last two stages
of the network. The algorithm is executed in six steps two of
theme using the well-known looping algorithm.

IV. NUMERICAL COMPARISON—THE

NEW PERFORMANCE CRITERION

The numerical evaluation of rearrangeable algorithms was
always based on the study of the failure probability and
the complexity of the codes. As we have mentioned in the
introduction we apply for the first time a new criterion, the
mean number of rearranges , in order to have an in-depth
testing of these algorithms for any network design.
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Fig. 3. Histogram of the percentage of permutations for different mean number of rearranges for the control algorithms including the extended
looping algorithm.

A. Clos-Type Switching Networks

In the following figures in the -axis we have the number
of new incoming calls causing network rearranges. In Fig. 1
the mean number of rearranges is given for 4 4 Clos
network. We observe that our modified algorithm shows the
minimum mean number of rearranges and the Carpinelli–Oruc
algorithm holds the maximum. The Chiu–Siu algorithm shows
the most stable mean value which means that the variance of
the number of rearranges is small. A high value of variance
declares that the number of rearranges is not easily predictable
when altering different elements in the permutation matrix.
This result is clearly demonstrated in Fig. 3, where the mean
number of rearranges according to the percentage of permu-
tations is given. The Chiu–Siu algorithm holds the minimum
variance of the number of rearranges even if the network size
increases. The variance of the other algorithms depends on
the size of the network. If the network size increases the mean
number of rearranges increases too with different percentage
for each algorithm as we can see in Fig. 2. We must mention
that by our modification we succeed to keep a relatively low
variance while getting the lower .

B. Switching Networks with 2 2 Elements

Although the extended looping algorithm can be applied into
switching networks with 2 2 elements, it was realized for
the clos-type switching networks. So we can try a comparison
of it with the previous control algorithms for clos networks.
The results are shown in Fig. 2. We can see that the extended
looping algorithm presents a mean number of rearranges
very close to our modified algorithm. The stability of the
algorithm can be seen in Fig. 3, where holds an almost
exponential behavior with the percentage of permutations,
which is not an acceptable result for network design.

The next investigation concerns control algorithms for net-
works with 2 2 switching elements and specifically the
perfect shuffle network, the benes network and the flip net-
work for various sizes. As it was previously mentioned each

control algorithm demands different number of stages in order
to realize all the possible permutations. Therefore, a direct
comparison of the mean number of rearranges (as in the clos
networks) of all control algorithms is of no use, since the
number of crosspoints is different for each one of them. Thus,
we compare the percent ratio of ( %) over the number
of crosspoints of each structure.

The first comparison concerns the perfect shuffle network
(the Andresen algorithm and the Lea algorithm have been
applied for this case). The results for the case of

and are given in Figs. 4–5 correspondingly.
We observe that for small networks ( ) no clear
difference can be recorded in the algorithms performance.
The algorithms present unstable performance according to the
mean percentage number of rearranges%. As the size
of the network increases the performance of the algorithms
becomes more stable and for the case of the Lea
algorithm presents almost constant behavior. On the other hand
the Huang–Tripathi algorithm has the minimum mean number
of rearranges, but with less stable performance.

Results are very similar for Benes and flip networks. More
precisely the only significant difference is for the Benes
network. This kind of network is constructed by a recursive
procedure leading to separate subnetworks inside the switching
fabric. In other words, any arbitrary call has less flexibility for
allocating the available paths. So, for the Benes network the
algorithms present more stable performance as it is shown in
Fig. 6. Additionally the mean number of rearranges% for
the Andresen algorithm is reduced to a very low value for the
case of Benes network.

V. CONCLUSION

From the above analysis, we can conclude that our mod-
ification of Chiu–Siu algorithm presents the most attractive
performance in terms of the mean number of rearranges
without being very complicated. Specifically it is slightly more
complicated than Chiu–Siu algorithm which is really a simple
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Fig. 4. The four algorithms for the shuffle/exchange network forN = 8.

Fig. 5. The four control algorithms for the shuffle/exchange network for
N = 32.

algorithm. The Andresen algorithm for the Clos network case
presents similar behavior to Chiu–Siu modified algorithm. On
the other hand the Andresen algorithm is based on the looping
algorithm which is a pure sequential algorithm, in contrast to
our parallel computing (and more fast in application) modified
algorithm. For the case of networks with 2 2 elements the
comparison is more complicated. These algorithms are more
sensitive to the size of the network in contrast with the control
algorithms for Clos networks. In addition, the architecture of
the networks plays important role to the mean number of
rearranges. We can conclude that Lea algorithm seems to be
the more stable according to the size and the architecture of the
network, showing a moderate with the lowest variance.

After this analysis, we can state that the new criterion
introduced gives us an in-depth knowledge for the properties

of each structure, it is applicable both to Clos-type and Benes-
type networks and it can give a common base for design of
any type of switching network.

APPENDIX A

Even if the Chiu–Siu algorithm is very recent and well
performing we have found after extended computer simulation
applications that the algorithm fails to converge in some cases.
We give a brief example assuming a 1616 Clos network
with (first-stage switches) and (middle-stage
switches). We select the following permutation matrix

The and matrix are given [5] by

First repetition:

Second repetition:

Third repetition:

Forth repetition:

Fifth repetition:

Sixth repetition:
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Fig. 6. The Andresen and Lea algorithm for the case of perfect shuffle and
Benes network.

Seventh repetition:

If we continue the repetitions, the algorithm enters into a
nonstop loop from the fifth to seventh repetition by swap-
ping the same elements,

and finally holes (zeroes) are created in the
matrix.

In order to avoid similar situations, we propose a simple
correction technique: At any swapping of a pair we look back
in the matrix in order to ensure that no holes have been
created. If a hole is found we choose this element and we
continue the process leaving only satisfied columns to the
left. The flow chart in Fig. 7 explains the Chiu–Siu modified
algorithm in details. Our modification is indicated by the
dashed box.

The application of this modification the previous example
gives

The initial and matrixes are

First repetition:

Fig. 7. Flow Chart of the Chiu–Siu modified algorithm.

Second repetition:

Third repetition:

We observe in the third repetition that the algorithm jumps
back in order to correct a hole that has been created in the
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Fig. 8. Failure probability of the four control algorithms, as a function of
the dimensions of the Clos Network (m;n).

position after the second repetition. We have tested our
algorithm in a series of matrixes which failed to converge
by algorithm [8], and we always obtained correct results.

APPENDIX B

We present an extended comparison of these algorithms
using a well-known criterion, the failure probability .

In Fig. 8 the failure probability of the four algorithms for
various sizes of Clos networks is given. We observe an inverse
exponential relationship of the failure probability with the net-
work size. The Chiu–Siu algorithm has the maximum failure
probability for large Clos Networks. The Carpinelli–Oru and
our modification of the Chiu–Siu algorithm have zero failure
probability as it was expected.

In the same figure the failure probability of the Chiu–Siu
algorithm is studied in more detail. For every distinct value
of the factor takes the values of -axis. We observe
that the failure probability is greatly affected by the value of

, in other words an increment to the number of the first-
stage switches leads to a great performance degradation of
the control algorithm. On the other hand, the behavior of the
algorithm appears more stable to the variation of the number of
inputs per first-stage switch (value) as we can see in Fig. 9.

Jajszczyk algorithm shows a similar behavior for different
values of . The basic idea of this algorithm is the decom-
position of the matrix . The sum of any row or
column of matrix equals . As the number of zeros in the

matrix increases, the probability of a deadlock increases too.
The number of zeros in the matrix depends basically on the
dimensions of matrix and secondary to the value of. In
Fig. 8 the failure probability is given according to the value
of . We observe that as theincreases the failure probability
increases slightly (more than Chiu–Siu algorithm). In other
words, does not effect very much the failure probability.

The next investigation concerns the application of back-
tracking method in the Jajszczyk algorithm. The results are

Fig. 9. Failure probability of the Chiu–Siu control algorithm according to
the value ofn.

Fig. 10. Failure Probability of Jajszczyk algorithm withn = 8 and various
values ofm, for the two methods of backtracking.

shown in Fig. 10. We observe that as the size of the network
increases the number of backtrackings required to decrease the
failure probability increases too. However, the first method of
backtracking, in which we go back as many steps as needed
to find a solution, never fails and the algorithm manages
to eliminate the failure probability even if the network size
increases. If we apply the second method of backtracking,
going back fixed number of steps, the results are different as
we observe in Fig. 10. The failure probability can not reach
the zero value, because the algorithm slides from the region
where a wrong element had been selected and remains to a
significant level. If the size of the network is increased the
performance of the algorithm becomes worse as it can be seen
from the same figure.
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For Benes-type networks no failure probability is applicable
since they work on self routing logic.
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