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VARIABLE REDUCTION METHOD IN
ROUTING PROBLEMS

Indexing terms: Computers, Computer communications,
Routing algorithms

A variable reduction method is used in the mathematical
formulation of routing problems where independent variables
obey linear constraints. In this respect the first and second
derivatives of the reduced objective function are evaluated.
The Hessian matrix results are diagonal and therefore
Newton’s method can easily be applied.

Introduction: In routing problems in computer networks the
routing strategy which minimises the average time delay D is
attained assuming that the topology and the link capacities
are given. The average time delay D for the one-destination
case is given by the expression’
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where (i, k) denotes the directed link connecting the i and k
nodes, f; is the flow in link (i, k) (mess/s), 0 < f;; < Cy, t; is the
total flow at node i (mess/s), 0 < ¢;, C;, is the constant capac-
ity of link (i, k) (bit/s), 0 < Cy, 1/p is the average message
length (bit/mess), y =Y, 7; is the total arrival flow in the
network (mess/s), 0 < y;, and ¢, is the fraction of t; routed
through link (i, k), 0 < ¢, < 1; moreover it is evident that
@i = falt:.

The independent variables in eqn. 1 are the flow fractions
@y which obey the constraint

; on=1 (v)]

i.e. the law of flow conservation at node i.

Methods of nonlinear programming, and especially
Newton’s method, have been used extensively for the solution
of the above stated problem.?* However, a difficulty in that
method is the construction and inversion of the matrix of
second derivatives, i.c. the Hessian matrix. Since the mathe-
matical formula which gives the second-order derivatives of
eqn. 1 is very complex, there is a tendency to consider the
Hessian and therefore its inverse to be diagonal and conse-
quently tractable in computations. It is to be observed,
however, that eqn. 2 denotes a linear relationship among the
independent variables at each node of the network and there-
fore the Hessian matrix cannot be diagonal; nor can it be
invertible, because there is a linear dependence among its
columns.* This means that Newton’s method cannot be
straightforwardly applied.

Now, the linearity of eqn. 2 leads us to try a variable
reduction method to eliminate some of the independent vari-
ables. In this letter a mathematical model for the routing
problem is formulated based on a variable reduction method.
The obtained Hessian matrix is now diagonal and therefore
Newton’s method can easily be applied on the modified objec-
tive function.

Mathematical analysis: Eqn. 2, on one hand, denotes a linear
relationship among the independent variables ¢, at each node
i of the network and, on the other hand, permits one of these
variables to be expressed as a linear combination of the
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others. Assuming two outgoing links (i, m) and (i, k) at node i,
eqn. 2 becomes

Put+ Pim=1=0;=1—0,, 3

It is to be noted that eqn. 3 holds even if there are more than
two variables. Now, calling x;, the independent variable ¢,,
and x; the dependent variable ¢;,, eqn. 3 becomes

Xp =@ =1—@Qin=1—x;, @)
and therefore eqn. 1 is

Ui Xim

1 1 t: X
D=B+D,=- ol Sy Sy ¥,
Y o HCim — LiXim ¥ gy BCi — Ly Xy
1 t;x

Y oy BCim — i Xim

(R

+ ; z k-1 ©)
0wy~ t,(l -y xim)

where D is the sum of two terms D, and D,, each one being a
function only of the independent variable x;, = ¢;, and the
dependent variable x;, = @, respectively. Moreover, it is
evident that

0<x,<l1 6)

To minimise D we have to calculate the first and second deriv-
atives with respect to independent variables x;,. Considering
only two variables at the moment and taking the first deriv-
ative of D with respect to x;,, we have

D _ D, aD;_ D, 2D, oxy =
0x,, 0x, 0x, 0x, 0xz 0x;,
Eqn. 7 because of eqn. 4 becomes
ap _ap, _ob, :
0% im it OXi  OXy 5
Now, turning back to the variables ¢, ¢;, we have
> _@p, ap, @D, oD,
0% im 7 OXim  Oxy i 0Pim 0Py
0B oD )
a(plm aq)ik
Gallager! has shown that
oD oD
—=1t|D. — ) =1t.9,
a¢'m l( im + aym> 1 im (10)

where D}, is the first derivative of D with respect to f;, and
dD/dy,, is the first derivative of D with respect to the incoming
flow at node m. Therefore eqn. 9 becomes

L O b0) 1y
axim

To generalise our results we consider now more than two
outgoing links at node i. Eqn.3 becomes ¢y + ¢, + @i,
+ ... =1. That, however, does not affect our results because
the condition given by eqn. 8 holds always. Indeed it is clear
that the derivative of D with respect to each independent vari-
able x;,, X, ---, is equal to the difference of the derivative of
D with respect to the corresponding variables @;,, @, .-,
minus the derivative of D with respect to the dependent vari-
able @, which has been expressed as a linear combination of
Qim> @ins --- - In other words, we obtain a system of equations
of the form of eqn. 9.
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The second-order derivatives can be evaluated from eqn. 9:

’D _ ’D %D (12)
a(xim)z B a((pim)z 00 00,
From eqns. 8 and 19 of a previous letter,*
’D - ) 13)
00100 B a(q’im)z
and therefore eqn. 12 becomes
2 2
D
0*D 0 (14)
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This result gives a reduced Hessian matrix with diagonal ele-
ments twice the diagonal elements of the corresponding ones
on the initial Hessian matrix. These elements are expressed®
by the relationship

9’D
a(‘l’im)2

where D7, is the second derivative of D with respect to f,, and
R, is

= (D} + R,) as)

oS0ttt (omin T 220)

1 ml

with I/ and I downstream neighbour nodes of node m.

It is to be noted that the reduced Hessian matrix is pure
diagonal, since x;,, Xi,, ..., are independent of each other.
Hence all the derivatives of the form (82D)/(0x;,0x;,) =
(0*D)/(0@;,, 09;,) are equal to zero.

Now, Newton’s method can easily be applied to the modi-
fied routing problem of eqns. 5 and 6. According to that
method the function D can be approximated by a series

D(¢p) = D(@o) + [VD(@o))(¢ — @0)
+ Ho — 90 "IV?D(90))(¢ — o) (16)

where VD(¢) is the gradient of D and V?D(¢) the Hessian
matrix. The minimum occurs at®

o1 = ¢ — a[V2D(gM] VDM (17

where [ ]! denotes matrix inverse, a > 0 is the step size of
the algorithm and k denotes the iteration number.
Using eqns. 11, 14 and 15, eqn. 17 now becomes

_ .k a 6im Tt 6ik
= @m0 DI+ R,)

k+1

Pim 0<om=<1 (18)
Computer applications of the above described procedure
show that the method gives very good performance. More-
over, a comparison with the method used by Chen® has
shown that our algorithm gives better results.

Conclusion: It is shown that the variable reduction method
described here can be used for the mathematical formulation
of routing problems where the independent variables obey
linear constraints. The reduced Hessian matrix is diagonal
and therefore Newton’s method can easily be applied.
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USE OF BILINEAR INTEGRATOR IN. DESIGN
OF FULLY DIFFERENTIAL BIQUADS

Indexing terms: Circuit theory and design, Switched-capacitor
networks

The design of a bilinear integrator in fully differential form
introduces new possibilities in the design of biquad circuits.
The new circuits presented here have no simple non-
differential counterparts, are stray-insensitive, have small sen-
sitivities and require capacitor values in acceptable limits.

Introduction: Fully differential (FD) configurations have been
widely used'~7 because they have several advantages when
compared to simple nondifferential configurations. The main
advantages are improvements in power supply noise rejection
and in the effects of charge injection via the switches.*:?

Beyond these advantages, FD structures present additional
design flexibility owing to the availability of outputs of both
signs. Also, a bilinear switched-capacitor (SC) integrator in
FD form can be realised.*-® In this letter FD biquad structures
are presented using the bilinear integrator.

FD SC integrators: In Fig. 1 three FD (SC) integrators are
shown.3% The first, Fig. 1a, is a bilinear FD integrator. The

vit , c, v c, C2
:_\—I V. +
Vo )
A C Vo-_' 1 Vo
N Cy| Vi G
Vi Gy
Vo
¢ vy
V- 1 Cz [
i—
Fig. 1 Fully differential integrators
a Bilinear
b Inverting

¢ Noninverting

second, Fig. 1b, and the third, Fig. 1c, are the FD counter-
parts of the well known nondifferential inverting and nonin-
verting integrators.®® These three integrators realise the
following transfer functions:

Cil+z7! c, 1
H=72 Hy=732
: C,1—127%, > :Fczl—z-l
-1
oowy sl )

The ‘4’ sign in eqns. 1 has the meaning that, by exchanging
the polarity of the input signal, the function sign is inverted.

FD SC biquads: The design of an SC biquad is based on the
realisation of the two integrator loop.5~!

The bilinear integrator can be combined with the inverting
or noninverting integrator to form the two integrator loop
needed for the biquad realisation.

Also, two bilinear integrators can be combined for the same
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