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An approximation of Newton’s method has been used recent-
ly in routing algorithms in computer networks, which is
based on the assumption that the matrix of second deriv-
atives of the objective function (Hessian) is diagonal. It is
demonstrated that in message-switched networks some spe-
cific nondiagonal elements exist and therefore the Hessian is
not diagonal. Moreover, it is found that these elements are of
the same order as the diagonal ones.

Introduction: There is a strong interest in routing algorithms
in computer networks, and especially in algorithms based on
methods of nonlinear programming which use second-order
derivatives of the objective function; this is because of the
higher speed of convergence and better accuracy of the results
which are achieved. The most attractive and preferred method
seems to be Newton’s method or some adequate approx-
imation of it, in order to reduce the large amount of computa-
tions required in this kind of problems.~?

A difficulty in Newton’s method, however, is the construc-
tion and inversion of the Hessian matrix. Since the mathe-
matical formula which gives the second derivatives of the
function used in routing problems is very complex,? there is a
tendency to consider the Hessian to be diagonal. On the con-
trary, it is shown that in message-switching networks, where
the above-mentioned algorithms were applied, this is not true;
this is because there is a linear relationship among some of the
independent variables at each node of the network. Therefore,
the second-order derivatives, taking the variables in pairs, are
not always equal to zero and consequently the Hessian is not
diagonal. In this letter we find that these nondiagonal ele-
ments do exist and they are calculated.

Mathematical analysis: In a network consisting of N nodes (1,
2,3,..., N) and L directed links it is assumed that the message
arrival processes are independent and Poisson-distributed,
whereas the message lengths are exponentially distributed.*
Let the directed link connecting the i and I nodes be denoted
by (i, ) € L. Furthermore, in our analysis the following vari-
ables and constants are involved: (i) f;; is the flow in link (i, ])
destined to node j (messages/s), 0 < f;, V(i, }) € L and f; = 0 if
i =1, (ii) C, is the constant capacity of link (i, ) (bit/s), 0 < Cy,
V@i, ) e L and C; =0 if i =1; (iii) y,; is the proper traffic
entering the network at node i and destined to node j
(messages/s), y; = 0, Vi € N; (iv) ¢, is the total flow at node i
destined to j (messages/s), t; >0, Vi € N; (iv) @y, is the frac-
tion of £4j) routed through link (i, 1), 0 < ¢ < 1, V(i, ]) € L; (vi)
1/u is the average message length (bit/message); (vii) y = Y
¥ vi, is the total arrival flow in the network (messages/s).

The above variables obey the following relationships and
conditions:
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The criterion of performance is the average message delay,
which is given by*
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For notational convenience we will suppress the destination
index and concentrate our analysis on a single destination.
Our definitions and the mathematical analysis are essentially
indentical for each destination, so this notational simplifica-
tion should not become a source of confusion. :
“The criterion of performance then becomes
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To minimise eqn. 5 with respect to the independent variables

@, the first and second derivatives must be considered. The
first derivatives of D are given by>
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where D}, is the first derivative of D with respect to f, i # .
On the other hand, the second derivatives of D are the
following :2
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where D) is the second derivative of D with respect to f;, and
R, is given by
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where §,,, = D;, + (0D/dy,), and m and m’' are downstream
neighbour nodes from node [.

Now, it is demonstrated here that the term 62D/d¢; 8¢, in
eqn. 9 is not always equal to zero. Assuming that node i has
two outgoing links / and I, eqn. 4 becomes
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It then follows that
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Considering that the ¢, is independent of ¢;;, eqn. 12 becomes
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The first term of eqn. 13 is
oDy 0Dy Ofy
09y fy 0@y

s aﬁl’
=V o 14
3 09y (14

749




From eqns. 1 and 11 we have
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and therefore eqn. 14 becomes
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On the other hand, the second term of eqn. 13 is
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Using eqn. 10, eqn. 17 becomes
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Considering eqns. 16 and 18, we obtain
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We note that eqn. 19, which is referred to a nondiagonal
element, is not only of the same form as eqn. 8, which yields
for a diagonal element, but also of the same order.

To generalise our consideration, we now assume that
eqn. 11 becomes ¢y + ¢, + @y + ... = 1; that is, we con-
sider nodes with more than two outgoing links. That,
however, does not affect our results, because the condition
given by eqn. 15 holds anyway.

3
Fig. 1 Network and routing pattern
To illustrate the above considerations a simple example is

given here. For the network and routing pattern of Fig. 1, the
Hessian matrix is shown in Fig. 2.
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Fig. 2 Hessian matrix
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The determinant A of that matrix is
= —4edabc

Considering that node 3 could be assumed as the destination
node, it follows that ¢,; = 1 and ¢, = 1 and therefore d and
e are equal to zero; consequently A = 0. That means the
Hessian is singular and its inverse does not exist. That leads to
the conclusion that a straightforward a]apllcatlon of Newton’s
method seems to be impossible.

Conclusion: It has been demonstrated that in message-
switched networks, where the independent variables are
related to each other through linear constraint equations, the
Hessian matrix of the objective function cannot besdiagonal.
Indeed, some of the nondiagonal elements can be of the same
order as the diagonal ones. Moreover, it is found out that the
matrix is singular, and consequently methods using matrix
inversion calculations seem to be inappropriate for the solu-
tion of the routing problems.
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EFFICIENT SERIAL/PARALLEL
INNER-PRODUCT COMPUTATION

Indexing terms: Signal processing, Distributed arithmetic -

A class of serial/parallel architectures for inner-product com-
putation  is described, based on carry-save accumulator
arrays. In their basic form such arrays form carry-save
multiply/adders. A simple modification of the coefficient feed
allows flexible extension to short vector inner-product com-
putation using distributed arithmetic. These modules may be
cascaded to handle longer vectors, forming high-level VLSI
digital signal processing subsystems.

Inner-product computers: There are many digital signal pro-
cessing applications for inner-product (IP) computers, e.g.
convolution, linear prediction etc. The IP of two vectors is
formed by summing the pairwise products of the vector ele-
ments. As'a multiplication is a 2-D sum of (weighted) single-
bit products, an IP is then a 3-D sum of single-bit products
(the 3rd dimension being the vector length). By permuting the
summation indices, many different approaches are made pos-
sible. Classical multiply-accumulate techniques put the vector
index outermost, while distributed arithmetic (DA)':? has the
data bit-index outermost. We propose a mixture of these two
techniques, with serial-data interfaces. ’

The serial/parallel multiplier revisited: Acting on n-bit data
with m-bit coefficients, the simple 2’s complement (2C) serial/
parallel (S/P) multiplier® forms the product in n clock cycles.
Hardware consists mostly of a linear array of m carry-save
adder (CSA) cells (each with a resident coefficient bit), which
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